
Efficient Algorithms for Evaluating XPath over Streams ∗

Gang Gou Rada Chirkova
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

ggou@ncsu.edu, chirkova@csc.ncsu.edu

ABSTRACT
In this paper we address the problem of evaluating XPath
queries over streaming XML data. We consider a practical
XPath fragment called Univariate XPath, which includes
the commonly used ‘/’ and ‘//’ axes and allows ∗-node tests
and arbitrarily nested predicates. It is well known that this
XPath fragment can be efficiently evaluated in O(|D||Q|)
time in the non-streaming environment [18], where |D| is
the document size and |Q| is the query size. However, this
is not necessarily true in the streaming environment, since
streaming algorithms have to satisfy stricter requirement
than non-streaming algorithms, in that all data must be
read sequentially in one pass. Therefore, it is not surprising
that state-of-the-art stream-querying algorithms have higher
time complexity than O(|D||Q|).

In this paper we revisit the XPath stream-querying prob-
lem, and show that Univariate XPath can be efficiently eval-
uated in O(|D||Q|) time in the streaming environment. Spe-
cifically, we propose two O(|D||Q|)-time stream-querying al-
gorithms, LQ and EQ, which are based on the lazy strategy
and on the eager strategy, respectively. To the best of our
knowledge, LQ and EQ are the first XPath stream-querying
algorithms that achieve O(|D||Q|) time performance. Fur-
ther, our algorithms achieve O(|D||Q|) time performance
without trading off space performance. Instead, they have
better buffering-space performance than state-of-the-art str-
eam-querying algorithms. In particular, EQ achieves opti-
mal buffering-space performance. Our experimental results
show that our algorithms have not only good theoretical
complexity but also considerable practical performance ad-
vantages over existing algorithms.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems — Query Processing

General Terms: Algorithms, Theory.

Keywords: XML, XPath, Streams, Query Processing.

∗This work was supported in part by NSF Career Award
Grant 0447742 and NSF IIS Grant 0307072.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

1. INTRODUCTION
There has been a growing practical need for querying

XML data efficiently. In many emerging applications, such
as monitoring stock market data, subscribing to real-time
news, and managing network traffic information, XML data
are available in streaming form only. An essential difference
between querying streaming XML data and querying non-
streaming XML data is that the former requires one-pass al-
gorithms over unindexed XML data, in which all data have
to be read sequentially and only once into memory.

1.1 Preliminaries
• Data Model for XML Streams
An XML document can be modeled as a rooted, labeled,
and ordered tree, which we call XML data tree. Each node
in the data tree corresponds to an element, attribute, or
text value in the XML document. An XML streaming al-
gorithm accepts input XML documents as a stream of SAX
[7] events. Two core SAX events are startElement(n) and
endElement(n), which are activated, respectively, when the
opening or closing tag of a streaming element arrives, and
accept the name of that element, n, as input parameter.
• XPath
XPath [13] is a popular language for querying XML data.
It has been used in many XML applications and in some
other languages for querying and transforming XML data,
such as XQuery [6] and XSLT [12]. In this paper we address
a practical fragment of XPath called Univariate XPath [3]
(see Figure 1). A key characteristic of Univariate XPath
is that in each Predicate, a Path can be compared with a
Constant, but not with another Path. This paper does not
treat explicitly the attribute axis @, since it can be handled
in a way similar to the child axis /.

An XPath query specifies a twig pattern Q to navigate
an XML data tree D. We denote the document size, i.e.,
the number of elements in D, by |D|, and the query size,
i.e., the number of nodes in Q, by |Q|. There are three
types of nodes in Q. There is exactly one result node, which
specifies the output of XPath. All non-result nodes on the
main path of Q, i.e., on the path from the root to the re-
sult node, are axis nodes. All other nodes are predicate
nodes. Figure 2 shows the twig pattern of an XPath query
Q: ‘//A[/E]/B[/F]//C[/G/I and //H]/D[/J]’1, where the
single-line edges represent /-axes, the double-line edges rep-

1To simplify the exposition, the examples given in this paper address
queries with AND predicates only; note that our algorithms can han-
dle predicates with mixed AND, OR, and NOT operators.

269

������� �	�
����� � ��������
�����

����� �	� ����������������������� � ����������������������� ��� �!��"#�����%$������&�(')�
������� �	� �	*+� � �	*�*+�
��������������� �	� ,��%-�� � �	.+�
��"#�����%$������&�	� ������� � �������0/��%-��1�0/���,�������,#�2�

��"#�����%$������ �	��,#�)� ��"#�����%$������2�3��"#�����%$������ �	��"4� ��"#�����%$������2�
�5,����)� ��"#�����%$������

/��%-��1� �	� �	�+� � ��65�+� � �(7)� � �(7��+� � �(8)� � �(8��+�

Figure 1: Grammar of Univariate XPath.
resent //-axes, and the result node ‘D’ is shaded. Further,
we define four sub-patterns of Q w.r.t a given query node
x in Q, as illustrated in Figure 2, where for Qroot(x) and
Qdown(x), x can be any type of query node, and for Qup(x)
and Qself (x), x is an axis node or result node (Section 4).
We use these sub-patterns to explain our algorithms later.

In this paper we focus on addressing the XPath query-
ing problem, which requires outputting all nodes in D (an-
swer nodes) that satisfy a specified XPath twig pattern Q
at its result node. We also address the XPath filtering
problem, which requires determining whether there exists
at least one match of Q in D. As we shall see in Section
3, stream-filtering algorithms could be used as a basis for
stream-querying algorithms.

We define two usage-based memory-space classes for str-
eaming algorithms: (1) Caching space, which is the mem-
ory space dynamically allocated for the run-time stack(s)
(Section 2.1). (2) Buffering space, as required by stream-
querying algorithms, which is the memory space dynami-
cally allocated for temporarily storing potential answer nodes.
We measure the size of buffering space as the maximal num-
ber of potential answer nodes buffered at a time during the
running time, and denote it by B. B might reach |D| in
the worst case, which cannot be avoided by any stream-
querying algorithms. A simple worst-case example is query-
ing ‘//A[/B]/C’ in an XML fragment of the form ‘〈a〉 〈c1〉
1 〈/c1〉 ...〈cn〉 n 〈/cn〉 〈b〉 0 〈/b〉 〈/a〉’, where c1 through cn

have to be buffered until 〈b〉 arrives.
We categorize streaming algorithms into two classes based

on when they evaluate the predicates in queries. We say that
a streaming algorithm is lazy if it evaluates the predicates
only when the closing tags of streaming elements are en-
countered, and is eager if it does that as soon as an atom in
a predicate is evaluated to true. The eager strategy usually
helps save buffering space significantly. A simple best-case
example is querying ‘//A[/B]/C’ in an XML fragment of the
form ‘〈a〉 〈b〉 0 〈/b〉 〈c1〉 1 〈/c1〉 ...〈cn〉 n 〈/cn〉 〈/a〉’. In the
eager strategy, B = 0, since the predicate of a is evaluated
(to true) as soon as 〈b〉 arrives. Thus, each ci can be flushed
as query result as soon as it arrives and does not need to
be buffered at all. In the lazy strategy, B = n, since the
predicate of a is not evaluated until 〈/a〉 arrives. Thus, all
c1 through cn have to be buffered. We will compare these
two strategies in more detail in Section 4.
• Recursion in XML data
Recursion, where some elements with the same name are
nested on the same path in the data tree, occurs frequently
in XML data in practice. For instance, among 60 DTDs
surveyed in [11], 35 are recursive. [3] formally defines the
recursion depth of an XML data tree D w.r.t query node q
in Q, denoted by rq, as the length of the longest sequence
of nodes e1, ..., erq in D, such that (1) all the nodes lie on
the same path, and (2) all the nodes match the sub-pattern
Qroot(q). It is easy to see that rq ≤ dD, where dD is the
maximum depth of D. We define the recursion depth r of

��� ����� �	��
�
� ����� ����� �	��� �����

����� ���
���� ����� ����� ������� � �����

!
" #
$ %

& ' (
) *

% %

% %

Figure 2: Sub-patterns of an XPath query Q.

D w.r.t Q as the maximum among all rq’s (r ≤ dD). For
example, for the data tree and query in Figure 4, rA = rB =
2 and rC = rD = rE = 1, and thus r = 2.

1.2 Related Work
• Non-Streaming Algorithms
A large amount of work has been done on efficiently querying
indexed XML data, such as StackTree [1] and TwigStack [8],
which improve query I/O performance by avoiding access to
query-irrelevant data. These algorithms first pre-partition
XML documents into multiple inverted lists and encode the
position of each element, and then perform structural joins
among the query-relevant inverted lists. These algorithms
are not suitable for querying streaming data, since they re-
quire preprocessing or indexing XML data.

Another body of work addresses evaluating XPath over
unindexed XML data, where the focus is on CPU perfor-
mance. Gottlob et al. [18] identified an XPath fragment
called Core XPath, which can be evaluated in O(|D||Q|)
time. Core XPath is slightly more expressive than Uni-
variate XPath, in that it includes axes other than / and
//. However, algorithms in [18] are not suitable for query-
ing streaming data, since they require scanning XML doc-
uments in multiple passes. Papers by Gottlob et al. [19]
and Segoufin et al. [29] study the theoretical complexity of
evaluating XPath.
• Streaming Algorithms
Stream-Filtering Algorithms. Considerable work has
been done in the context of filtering XML streams with a col-
lection of XPath expressions. The key idea for improving the
filtering performance is to share common sub-expressions
among multiple XPath expressions, e.g., common path pre-
fixes (YFilter [14]), common predicates (XPush [21]), or
common substrings (XTrie [9]), as much as possible. Most
of these algorithms are automata-based. YFilter [14] and
the algorithm proposed in [20] mainly address linear path
queries. For twig queries with predicates, YFilter uses an
expensive post-processing step to join derived path tuples.
XPush [21] supports twig queries with nested predicates, but
the number of states in its automaton grows exponentially
in |Q| in the worst case, and thus it might incur exponen-
tial memory space costs. These automata-based algorithms
are proposed in the context of stream filtering, and it is not
clear how to extend them to efficient stream querying.
Stream-Querying Algorithms. Peng et al. [27] devel-
oped an eager automaton-based XPath stream-querying sys-
tem XSQ. Similarly to XPush [21], the number of states
in its automaton is exponential in |Q| in the worst case.
XSQ works in O(|D| · 2|Q| · k) time, where k is O(r|Q|) in
the worst case [10, 27]. XSQ might have to buffer multi-
ple physical copies of a potential answer node at a time,
since (due to the recursion in XML data streams) an an-
swer node might have multiple matchings with the query.
Bar-Yossef et al. [3] studied the theoretical caching-space

270

lower bound for evaluating XPath over streams, and also
proposed a lazy stream-filtering algorithm S-Stack (Single-
Stack). S-Stack uses a single run-time stack for caching,
works in O(|D| · |Q| · r) time, and uses O(|Q| · r) caching
space for Univariate XPath. It lays a foundation for Tur-
boXPath [22], a lazy stream-querying system for evaluating
XQuery-like queries. More recently, Chen et al. [10] pro-
posed a lazy stream-querying algorithm, TwigM, to avoid
the exponential time and space complexity incurred by XSQ.
TwigM extends the multi-stack framework of the TwigStack
algorithm [8]. In [10], it is shown that TwigM can eval-
uate Univariate XPath in polynomial time and space in
the streaming environment. Specifically, TwigM works in
O(|D||Q|(|Q| + dD · B)) time and uses O(|Q| · r) caching
space. However, like XSQ, TwigM might have to buffer mul-
tiple physical copies of a potential answer node at a time.
XAOS [5], based on a single-stack framework similar to the
framework of S-Stack, addresses evaluating XPath queries
with both forward and backward axes. Bar-Yossef et al. [4]
studied the theoretical buffering-space lower bound for eval-
uating Multi-Variate XPath over streams, and also proposed
a stream-querying algorithm based on the eager strategy,
which works for querying non-recursive XML streams only.

Some stream-querying systems for evaluating XQuery qu-
eries have recently been developed, such as BEA/XQRL [17],
Flux [24], and XSM [25].

1.3 Motivations and Contributions
As we saw in Section 1.2, Univariate XPath can be eval-

uated in O(|D||Q|) time in the non-streaming environment
[18]. However, this excellent time performance has never
been achieved by existing stream-querying algorithms. Al-
though the time performance of evaluating Univariate XPath
in the streaming environment has been improved from the
exponential O(|D| · 2|Q| · r|Q|) of XSQ to the polynomial
O(|D||Q|(|Q|+dD ·B)) of TwigM, it has not yet reached the
O(|D||Q|) of the non-streaming environment. As we shall
see in Section 5, the |D||Q|-independent time-complexity
factors, such as 2|Q| · r|Q| in XSQ and dD · B in TwigM,
could have a significant negative impact on the time perfor-
mance of querying streaming XML data.

Therefore, a key question we ask here is: Could Univari-
ate XPath be evaluated in O(|D||Q|) time in the stream-
ing environment? We observe that the |D||Q|-independent
time-complexity factors of the existing stream-querying al-
gorithms, such as r|Q| in XSQ and dD ·B in TwigM, result
from the fact that these algorithms have to exhaustively
visit a large number of (and sometimes almost all) elements
cached in run-time stack(s) on the arrival of a streaming
element in D. We believe that such nearly exhaustive ex-
ploration can be avoided. By carefully organizing and pro-
cessing the elements cached in stacks and by carefully man-
aging the buffered potential answer nodes in a multi-stack
framework, we can obtain more efficient stream-querying al-
gorithms that only need to visit a small portion of the rele-
vant elements cached in stacks on the arrival of a streaming
element in D, and thus achieve O(|D||Q|) time performance.
We now summarize our main contributions.

(1) We show that Univariate XPath can be efficiently eval-
uated in O(|D||Q|) time in the streaming environment, using
either the lazy strategy or the eager strategy. Specifically,
we propose two O(|D||Q|)-time stream-querying algorithms,
LQ and EQ, which are based on the lazy strategy and on the

���������
	

������

��	��
���

�
��� ���
�� ����	��

�����

� ���������������� � ��� ����!���"#��� ��$!���%�� $!��
����&
����!��

��� ��$!���%�� $!������
' () * + , - . /

������	

	�0����

� ��� �

�

��� ������ ����	��

�21

�3� ������ ���4	5�

6

7 � ' " � &�"8�) ":9�&�"8� + "#;�&�"<� . ">=�&�"<� (" 1 &�":?>?A@

��B

=

C

� $���

�
� C �

D �FE

	�� $ �

G

H

C

� $3�
�

�
� C �

D �FE

	�� $ �

=

;

C

9
� C �

D �IE

� � � ���

�3� ������ ���4	5�

J

;

C�C

� $����

1
� C �

D �IE

	�� $ �

H

;

C

�
� C �

D �IE

� � � ���

�

�3� ������ ���
	��

;

9

C
C

1
� C �

D �KE

� � � �
�

L

9

C

� $�
�

�
� C �

D �KE

	5� $ �

9

�

C

1
9

D �ME

� � � ���

1

�

C

� $���

�
� C �

D �ME

	�� $ �

�

B

C�C

�
9

D �FE

� � � ���

B

� C �

� C �

� C �
� C �

� C �

� C �

N ����	 $ � �

� ����	��

��%O����� � � ����� � C �� C �7 ��B @� C �7 G @7 H " J @� C �7 L @� C �7 1 @� C �

�

Figure 3: Query table for the query of Figure 2.

eager strategy, respectively. To the best of our knowledge,
LQ and EQ are the first XPath stream-querying algorithms
that achieve O(|D||Q|) time performance.

(2) We show that our algorithms are not only time-efficient
but also space-efficient. Both LQ and EQ have the same
(|D|-independent) caching-space complexity O(|Q|·r) as the
existing state-of-the-art stream-querying algorithms. In par-
ticular, EQ tries to flush buffered query results out of mem-
ory as soon as possible, and achieves optimal buffering-space
performance.

(3) Our extensive performance evaluation shows that our
algorithms have not only good theoretical complexity but
also considerable practical performance advantages over sta-
te-of-the-art stream-querying algorithms.

The rest of this paper is organized as follows. In Section
2 we propose a lazy stream-filtering algorithm LF, which
lays a foundation for our lazy stream-querying algorithm
LQ described in Section 3. In Section 4 we propose an ea-
ger stream-querying algorithm EQ. We report the results of
an experimental performance evaluation in Section 5. We
conclude in Section 6.

2. LAZY FILTERING ALGORITHM (LF)
We begin this section by introducing the query-prepro-

cessing step (Section 2.1). In Section 2.2 we propose a basic
LF algorithm, which is extended in Section 2.3 to a full LF
algorithm that addresses queries with ∗-nodes (wildcards)
or same-name nodes.

2.1 Query Preprocessing
A query table TQ, illustrated in Figure 3, with size linear

in |Q|, is statically stored in memory throughout stream
processing. Each column in TQ corresponds to a query
node in Q. Column 0 represents a virtual node that is the
parent of the root query node. A mapping table, imple-
mented in the form of a hash table, is built over all (name,
column number) pairs for retrieving the column number of
any query node given the name of that node. We assume
for now that Q has no ∗-nodes or same-name nodes.

TQ includes the following fields for each query node cn. (1)
axis: / or //. (2) type: result node (‘r’), axis node (‘a’), or
predicate node (‘p’). This field can be ignored for the filter-
ing problem. (3) parent, the column number of the parent
node of cn. (4) pos, which denotes the position of cn among
its sibling nodes. In Univariate XPath the order of sibling
nodes is not significant, and we can select an arbitrary fixed
order. (5) host, for the querying problem only (see Section
3.1). (6) p children, the set of all predicate-node children of
cn. (7) f , the boolean formula defined w.r.t the predicate-
node children of cn. We do not explicitly record f [cn] in TQ

if AND is the only operator in f [cn] (e.g., for our example

271

Algorithm 1: B-LF::startElement(n)

depth=depth+1;1
cn = mapping(n); if cn 6= FAIL then LF::startBlock(cn);2

Function mapping(n)
1 hash id = hashing(n);
2 if MappingTable[hash id].name = n then
3 return MappingTable[hash id].column number;
4 else return FAIL;

Procedure LF::startBlock(cn)
1 cp = parent[cn]; if stack[cp] is empty then return;
2 p = top(stack[cp]);
3 if p.flags[pos[cn]] = 0 then
4 if axis[cn] = ‘//’ or p.depth+1 = depth then
5 if leaf[cn] = true then
6 p.flags[pos[cn]] = 1;

7 else
8 s = newElement(stack[cn], depth);
9 push(stack[cn], s);

���
��� ���

���

� �
� �

���
��� ���

���

� � � �

�
	 �
�������� ��	 �
�� 	�� �

��	 ������� ��� � �
	 ������������� ��	 �
������ � �

���
��� ���

��	 �
��������
� �� � �� � ��

� �� � �� � ��

�� 	 �� 	 �� 	

�� 	 �� 	 �� 	

� �
� �
� �
� �

� � 	��
�
� �

���
� � � 	 � �

!�"

� �
�
$���% �
	�	'& ($��
��)�* &

� �
��+ 	 � ��,���	 � ($��
��) (.- ��/

Figure 4: B-LF (query: ‘//A[//D]//B[/E]/C’).

queries with AND predicates only). (8) leaf , which indi-
cates whether cn is a leaf query node. (9) stack, pointer to
a run-time stack. In our algorithms, one run-time stack is
created for each non-leaf query node.

Note that the full version of TQ shown in Figure 3 is de-
signed for the querying problem (Section 3). For the filter-
ing problem we consider here, the p children field of each
axis node should also include its axis-node/result-node child,
since all query nodes are viewed as predicate nodes in the
filtering problem.

Each element in stack[cn] corresponds to an XML ele-
ment e (data node) named n, and has two fields: (1) depth:
the (integer) depth of e in the data tree. (2) flags: a bit
array of size |p children[cn]|. Given cm ∈ p children[cn],
e.flags[pos[cm]] indicates whether a match with Qdown(cm)
has been found under e. Further, flags are partitioned into
two groups, cFlags and dFlags, which correspond to / and
// axis (predicate-node) children of cn, respectively. We
use the following stack functions: (1) top(stack) returns the
top element of stack. (2) push(stack, element) pushes a new
element into stack. (3) pop(stack) pops out the top element
of stack. (4) destroy(element) recycles the memory space
of a stack element. (5) evaluate(element.flags, f [cn]) com-
putes f [cn] based on the bits in flags of a stack[cn] element.

2.2 The Basic LF Algorithm (B-LF)
Our basic LF algorithm (Algorithms 1 and 2), B-LF, ad-

dresses queries without ∗-nodes or same-name nodes. For
brevity, we assume that no value comparisons are involved
in predicates. It is straightforward to extend our algorithms
to handle value comparisons.

Initially, an element v is pushed into stack[0], the stack of
the virtual query node at column 0, with v.depth = 0 and
v.flags[1] = 0. The global variable depth, which denotes the
depth of the streaming element being processed in the data
tree, is initially set to 0, and is incremented/decremented by
1 in each startElement(n) / endElement(n) event.

Algorithm 2: B-LF::endElement(n)

cn = mapping(n); if cn 6= FAIL then LF::endBlock(cn);1
depth = depth-1;2

Procedure LF::endBlock(cn)
1 if leaf[cn] = true or stack[cn] is empty then return;
2 s = top(stack[cn]);
3 if s.depth = depth then
4 pop(stack[cn]);
5 if stack[cn] is not empty then
6 q = top(stack[cn]); q.dFlags = q.dFlags | s.dFlags;

7 if evaluate(s.flags, f [cn]) = true then
8 cp = parent[cn];
9 if cp = 0 then confirm that a match has been found;

10 else
11 p = top(stack[cp]); p.flags[pos[cn]] = 1;
12 if axis[cn] = ‘//’ then clearPredStackS(cn);

13 destroy(s);

Procedure clearPredStackS(cn)
1 if stack[cn] is not empty then
2 destroy all elements in stack[cn];
3 for each ci in p children[cn] do
4 if leaf[ci] = false then clearPredStackS(ci);

The basic idea of startBlock(cn) is that an element qual-
ifies for being pushed into stack[cn] (line 9) only if it has a
match with Qroot(cn) (lines 1 and 4). newElement(stack[cn],
depth) (line 8) creates a new stack[cn] element s with s.depth
= depth, and initializes all bits in s.flags to 0. The basic
idea of endBlock(cn) is evaluating s.flags (line 7) to deter-
mine whether a match with Qdown(cn) has been found under
p (line 11), as well as passing all those bits in s.dF lags that
have been set to 1 down to the new top element of stack[cn]
(line 6). Note that line 12, which calls clearPredStackS(cn)
to clear all elements cached in stack[cn] and all descendant
stacks of cn, can be removed without impacting the correct-
ness of B-LF. The cleared stack elements will not need to
be evaluated when their closing tags arrive in future. The
correctness of the B-LF algorithm is intuitive2. We now
illustrate it using a running example.

Example 1. Figure 4 shows a running example with sev-
eral snapshots of stacks, where the depth numbers of the
stack elements are not shown for simplicity. When 〈g3〉 is
read, g3 is simply discarded, since its tag name G is query-
irrelevant (line 4 in mapping(n)). When 〈/b6〉 is read, b6 is
popped out of stack[B] (line 4 in endBlock(cn)), and then
a5.f lags[b] is set to 1 and clearPredStackS(B) is called to de-
stroy b4 in stack[B] (lines 10-12 in endBlock(cn)). When
〈/a5〉 is read, a5 is popped out of stack[A], and a5.f lags[b] =
1 is passed down to a2.f lags[b] (lines 5-6 in endBlock(cn)).
Note that b9 does not need to be pushed into stack[B], since
a2.f lags[b] = 1 (line 3 in startBlock(cn)). Finally, when
〈/a2〉 is read, a match at a2 is confirmed, since a2.f lags[d] =
1 and a2.f lags[b] = 1 (lines 7-9 in endBlock(cn)).

Recalling the definition of r in Section 1.1, we can see that
r represents the maximal length of all run-time stacks dur-
ing stream processing. Thus, the length of each stack is
bounded from above by r. The caching-space complexity3

of B-LF depends mainly on the number of flags bits in
2Due to the space limit, in this paper we have to omit all rigorous
correctness proofs.
3For clarity, in this paper we suppress trivial logarithmic factors in
all space-complexity expressions. For example, strictly speaking, the
depth field of each stack element takes log(dD) bits of memory space.

272

Algorithm 3: LF::startElement(n)

depth=depth+1;1
c-sequence = mappingNameToColumns(n);2
for each ci in c-sequence in the c-sequence order do3

LF::startBlock(ci);4

Function mappingNameToColumns(n)
1 hash id = hashing(n);
2 if MappingTable[hash id].name = n then
3 return MappingTable[hash id].column sequence;
4 else return ∗-sequence;

�����

���������
	��������������	�������������������	���������� ��	�����!
	 �����

����������	���������� ��	����

" �$#���%�& '�&�(�&�)�!��
��*���%�& +�&�(�!��
��,���%�& -�&�(�!�.

+
��� �

'
�����

(
� ���

%
�����

-
�����

)
�����

/
�����

0 �
1�2������ *

3�� ��1�465
#87 9 :

*

; &�������� ��	����85<%�&�(

,

; 7 9=:
#>7 ?�:

; 7 ?@: # 7 9=: , ; 7 9=: ; 7 ?@: # 7 ?@:

Figure 5: Mapping table (LF): name → column
sequence.

all stack elements, which is O(
P

ci∈I(Q) r · fanout(ci)) =
O(r · |Q|), where I(Q) is the set of all non-leaf query nodes
in Q. For the time complexity, startBlock(cn) works in O(
max{fanout(cn), 1}), due to line 8 that initializes all bits in
s.flags to 0. endBlock(cn) also works in O(max{fanout(cn),
1}), due to line 6 that passes down s.dF lags, and to line 7
that evaluates s.flags. (Note that line 12, which can be re-
moved without impacting the correctness of B-LF, has O(1)
amortized time cost for each cleared stack element, which
will not need to be evaluated any more.) The bottleneck is
the function mapping(n), which takes only O(1) time if the
mapping table is a well-implemented hash table, or O(|Q|)
time if the mapping table is implemented as a naive sequen-
tial table. Thus, B-LF has time complexity O(|D||Q|) (or
O(|D| ·FQ) when using a well-hashed mapping table, where
FQ is the maximal fanout of Q (FQ ≤ |Q|)).

2.3 The Full LF Algorithm (LF)
It is easy to extend B-LF to address queries with ∗-nodes

or same-name nodes. First, query preprocessing still cre-
ates one column for each query node. But each name in the
mapping table corresponds to a sequence of column numbers
whose corresponding query nodes either have that name or
are ∗-nodes (see Figure 5). A special sequence for the col-
umn numbers of all ∗-nodes, called ∗-sequence, is also cre-
ated. All nodes in column sequences follow a special order,
such that each node must not have any of its ancestor nodes
in front of itself. Here we implement this order using the
post-order of nodes in the query twig. Our extended al-
gorithm (Algorithms 3 and 4), called LF, iteratively calls
LF::startBlock and LF::endBlock described in Algorithms 1
and 2.

The intuition behind LF is that when a streaming ele-
ment named n arrives, LF visits all query nodes named n
and all ∗-nodes. The order of visiting those nodes is crucial.
As described in Algorithms 3 and 4, startBlock(ci) should
be called in the c-sequence order, and endBlock(ci) should
be called in the reverse c-sequence order, in order to pre-
vent an element relevant to ci from seeing its own copy in
stack[parent[ci]]. For example, in Case 1 in Figure 6, when
〈a1〉 is read, a1.f lags[a] will be set to 1 if startBlock(A) is
called after startBlock(∗), which will cause LF to eventually
confirm an incorrect match at a1. In Case 2 in Figure 6,
when 〈/b3〉 is read, d1.f lags[b] will miss being set to 1 if
endBlock(B) is called before endBlock(∗), which will cause
LF to eventually miss confirming a correct match at d1.

Algorithm 4: LF::endElement(n)

c-sequence = mappingNameToColumns(n);1
for each ci in c-sequence in the reverse c-sequence order do2

LF::endBlock(ci);3

depth=depth-1;4

������������	�

� 	
������ �����

���

��� �

� 	
�� � �

��������� ��� � ��! � � � ��������� ����� �"! �$#��

� 	
� �
��%

� �

�

� 	
�� � � �

� 	
�� � �

��&�� �'��� ��! � � �
�����(�)��* � �

� �

�,+"��� ����� +

- ������.������ - ������.������
�

� 	
�� � �

��&�� ���"� ��! � � �

� �

Figure 6: LF: Incorrect order of calling blocks
(query: ‘//*[//A]/B/C’).

As discussed in Section 2.2, both LF::startBlock(ci) and
LF::endBlock(ci) work in O(fanout(ci)) time if ci is a non-
leaf query node, and in O(1) time otherwise. Since the
length of each c-sequence is bounded by |Q|, both for-loops
in Algorithms 3 and 4 work in time O(

P
ci∈I(Q) fanout(ci)+P

ci∈L(Q) 1) = O(|Q|), where L(Q)/I(Q) is the set of all
leaf/non-leaf nodes in Q. Thus, Algorithms 3 and 4 work in
O(|Q|) time. Further, as discussed in Section 2.2, the length
of each stack is bounded by r. Therefore, LF has the same
caching-space complexity O(|Q| · r) as B-LF, although some
elements might have multiple copies in different stacks. Note
that in B-LF the sum of the lengths of all stacks is bounded
by dD, while in LF the lengths of all stacks may reach dD

at a time.

Theorem 1. For all queries in Univariate XPath, the LF
algorithm correctly determines whether there exists a match
of Q with D. It has time complexity O(|D||Q|) and caching-
space complexity O(|Q| · r).

3. LAZY QUERYING ALGORITHM (LQ)
In this section, we extend our lazy stream-filtering algo-

rithm LF to a lazy stream-querying algorithm LQ. LQ works
in O(|D||Q|) time and uses O(|Q| ·r) caching space. That is,
the time and caching-space complexity of LQ are not higher
than those of LF, although the querying problem seems to
be more complex than the filtering problem. We begin by
introducing in Section 3.1 a query table, which is a slight ex-
tension of the table of Section 2.1. Next, in Section 3.2 we
introduce algorithm U-LQ in which the answer nodes might
be output not in the document order. In Section 3.3 we
extend U-LQ to the full LQ algorithm that outputs answer
nodes in the document order.

3.1 Query Preprocessing
In addition to the fields used in LF, the query table in LQ

includes two more fields. (1) type, as described in Section
2.1. (2) host, for axis nodes only, which records the column
number of the segment host of an axis node. Specifically,
we partition the main path of Q into multiple segments by
removing all // edges on it. The host of a segment is just
the axis node at the tail of that segment. Meanwhile, we
restrict the segment including the result node to not have a
host. For example, for the query in Figure 2, its main path
‘//A/B//C/D’ is partitioned into two segments: ‘A/B’ and
‘C/D’, where host[A] = host[B] = B, and C and D have no
host.

Unlike LF, LQ requires buffering space for storing poten-
tial answer nodes, since LQ serves the querying purpose.

273

Algorithm 5: Procedure U-LQ::startBlock(cn, id)

cp = parent[cn]; if stack[cp] is empty then return;1
p = top(stack[cp]);2
if type[cn] 6= ‘p’ or p.flags[pos[cn]] = 0 then3

if axis[cn] = ‘//’ or p.depth+1 = depth then4
if leaf[cn] = true then5

if type[cn] = ‘p’ then6
p.flags[pos[cn]] = 1;7

else if type[cn] = ‘r’ then8
b = newBufferNode(id);9
if cp = 0 then flushNode(b);10
else appendNode(p.list, b);11

else12
if type[cn] = ‘p’ or type[cn] = ‘a’ then13

s = newElement(stack[cn], depth);14

else s = newElement(stack[cn], depth, id);15
push(stack[cn], s);16

���
���

���

� �
��� ���

��	

�� ���� �����

���

���
��
��� � �

� ������� � 	 �

���
��� � �

� �������� � �

���

� � ���

� �������� � �

� � �� �

� ������ � � 	 �
� ��������� � �

� �
� 	

� � ���

���

� ���� � � � � �

� ! � � ! � � ! �

� ! �

���
� � ��� � � �� �
� ! �

��� � ��� � � ��� � � �� �
� ! �

� � �

" ��#���$
%���'& (#�����)* &

� � �� � �
� �+�

� � 	
� � � � �,� � � �

Figure 7: U-LQ (query: ‘//A[//D]/B[/E]//C’).

Specifically, LQ creates two more fields for some stacks. (1)
list, for the stacks of axis nodes only, which is a pointer to
the head of a list that is used to buffer potential answer
nodes. (2) id, for the stack of the result node only (if the
result node is a non-leaf node), which records the id of a
possible answer node.

3.2 The Unordered LQ Algorithm (U-LQ)
Similarly to Algorithms 3 and 4, U-LQ iteratively calls

procedures startBlock and endBlock (Algorithms 5 and 6)
in the c-sequence order and in the reverse c-sequence or-
der, respectively. For XPath queries, an answer node might
be output in the form of its text value, its unique node ID
(if available), or the XML fragment rooted at it. Here for
brevity we assume that the IDs of all answer nodes are avail-
able, and all answer nodes are output in the form of their
IDs. It is easy to extend our algorithms to produce outputs
in either of the other two forms.

It is easy to see that U-LQ shares substantial portions of
code with LF, since U-LQ processes predicate nodes in the
same way as LF does. (Recall that in LF all query nodes
are considered predicate nodes.) However, U-LQ has extra
code for processing axis nodes and result node. We define
a potential answer node e as a data node that corresponds
to the result node of Q and has been found to have a match
with Qdown(ck), where ck is some axis node or result node of
Q. If ck is the root node, then e is a real answer node. U-LQ
creates exactly one physical copy for each potential answer
node, and buffers it in the list of some stack element. U-LQ
works in such a way that all nodes buffered in the list of a
stack[ci] element, where ci is an axis node, have been found
to have a match with Qdown(ci+1), where ci+1 is an axis
node or result node with parent ci.

U-LQ includes several additional functions not used in LF.
(1) newBufferNode(id) buffers a potential answer node in
the form of its id. (2) appendNode(list, node) appends a po-
tential answer node to the tail of list. (3) appendList(list1,

Algorithm 6: Procedure U-LQ::endBlock(cn)

if leaf[cn] = true or stack[cn] is empty then return;1
s = top(stack[cn]);2
if s.depth = depth then3

pop(stack[cn]);4
if stack[cn] is not empty then5

q = top(stack[cn]); q.dFlags = q.dFlags | s.dFlags;6

if evaluate(s.flags, f[cn]) = true then7
cp = parent[cn]; p = top(stack[cp]);8
if type[cn] = ‘p’ then9

p.flags[pos[cn]] = 1;10
if axis[cn] = ‘//’ then clearPredStackS(cn);11

else if type[cn] = ‘a’ then12
if cp = 0 then flushList(s.list);13
else appendList(p.list, s.list);14

else if type[cn] = ‘r’ then15
b = newBufferNode(s.id);16
if cp = 0 then flushNode(b);17
else appendNode(p.list, b);18

else19
if type[cn] = ‘a’ then20

if stack[ch = host[cn]] is not empty then21
h = top(stack[ch]);22
appendList(h.list, s.list);23

else destroyList(s.list);24

destroy(s);25

list2) appends list2 to the tail of list1. (4) destroyList(list)
recycles the memory space of all nodes in list. (5) flushList
(list) flushes all answer nodes in list from memory to the
user. (6) flushNode(node) flushes an answer node from
memory to the user.

Example 2. Figure 7 shows a running example for U-
LQ, which returns sequence c11c15c5c13c17 as answer nodes.
When 〈c5〉 is read, c5 is appended to b4.list (line 11 in Al-
gorithm 5). When 〈/b4〉 is read, b4.list = c5 is appended
to a3.list (line 14 in Algorithm 6), since b4’s predicate is a
successful match. When 〈/a3〉 is read, the failure to match
a3’s predicate causes a3.list = c5 to be appended to b2.list,
since stack[B = host[A]] is not empty (lines 21-23 in Al-
gorithm 6). When 〈/a8〉 is read, the successful matching of
a8’s predicate causes c11c15 in a8.list to be flushed to the
user (line 13 in Algorithm 6). Finally, when 〈/a1〉 is read,
c5c13c17 in a1.list are flushed to the user since a1’s predicate
is a successful match.

Now, suppose a1’s predicate fails to match when 〈/a1〉
is read. Then, c5c13c17 in a1.list will be destroyed, since
stack[B = host[A]] is now empty (line 24 in Algorithm 6).

Note that unlike the existing stream-querying algorithms,
U-LQ does not need to exhaustively visit a large number
of stack elements when a streaming element in D arrives.
Specifically, startBlock(cn, id) only needs to visit at most
one stack element, p (line 2), and endBlock(cn) only needs
to visit at most three stack elements: s (line 2), q (line
6), and p (line 8) or h (line 22). That is, the time perfor-
mance of U-LQ never depends on the stack length, i.e., on
the recursion depth r. Therefore, compared to the existing
stream-querying algorithms, a very nice property of U-LQ
is that recursion in XML data streams has no impact on its
time performance. Thus, U-LQ does not have the r-relevant
time complexity factors of the existing stream-querying al-
gorithms, such as r|Q| of XSQ and dD ·B of TwigM (Section
1.2).

274

��� ���

��� ��	�
��� �����

���
	� � �

�����
���

� � �

������������! � �

�"� �
� � � �

�#� ��	�
�$��� �

� �
	� � �

��� ���

��� �#	%
$� � & �
	� � �

� ��� � � � � � �

� � � ��� � � � � � � � � & �$'

��($)$*+��$(!,�-

�! � � +��$(!,�-
� � � +���(.,�-

/ �#�,�0�(�1"� 	�23�4($*������������! � �

���!��#���5�� � �

Figure 8: LQ (same query/data as in Figure 7).

Specifically, U-LQ has the same time complexity O(|D||Q|)
as LF. The flushList(list) and destroyList(list) functions
have O(1) amortized time cost for each node in list. In
fact, after a potential answer node is buffered, it is visited
only exactly once — when it is finally either flushed to the
user by flushList(list) or destroyed by destroyList(list).
The other additional functions, such as appendList(list1,
list2), take exactly O(1) time. Also, it is easy to see that
U-LQ has the same caching-space complexity O(|Q| · r) as
LF. However, unlike LF, U-LQ requires buffering space for
storing potential answer nodes in the lists of stack elements.
It is easy to see that U-LQ uses no more buffering space
than any lazy stream-querying algorithm. In particular, un-
like TwigM and XSQ (Section 1.2), which might have to
buffer multiple physical copies of a potential answer node at
a time, U-LQ needs to buffer only exactly one physical copy
for each potential answer node. Therefore, the buffering-
space complexity of U-LQ is O(|D|) in the worst case. (See
the worst-case example in Section 1.1.)

3.3 The Full LQ Algorithm (LQ)
The LQ algorithm, which outputs answer nodes in the

document order, is basically the same as U-LQ. The main
difference is that LQ creates a global queue to collect all
possible answer nodes in the document order. Specifically,
in LQ each buffered node still has only one physical copy,
but it might be linked into both the global queue and the
list of some stack element, based on the double-link strategy
illustrated in Figure 8. Also, each buffered node has an extra
confirmed bit, which indicates whether this node has been
confirmed to be an answer node or not. flushList(list)
(as well as flushNode(node)) in LQ does not flush answer
nodes in list to the user immediately as U-LQ does, since at
this time some other nodes in the queue that are in front of
the nodes in list might have not been confirmed whether to
be answer nodes or not. Thus, flushList(list) in LQ just
flips the confirmed bits of the nodes in list from 0 to 1,
and then calls function tryF lushingQueue(), which tries to
sequentially flush the nodes in the queue, beginning from
the head of the queue, until a node with confirmed = 0 is
encountered. destroyList(list) in LQ unlinks those nodes in
list from the queue, recycles their memory space, and then
calls tryF lushingQueue(). The reason is, after the removal
of those nodes in list from the queue, some answer nodes in
the queue that have been confirmed earlier might be able to
reach the head of the queue, and thus can be flushed to the
user immediately.

Example 3. Figure 8 shows a running example for LQ.
When 〈/a8〉 is read, c11c15 in a8.list are confirmed as an-
swer nodes, and have their confirmed bits flipped to 1 by
flushList(a8.list). But the head of the queue, c5, still has
confirmed = 0. Thus, no answer nodes can be flushed to
the user at this time. All answer nodes will be flushed only

when c5c13c17 in a1.list have their confirmed bits flipped to
1 by flushList(a1.list) when 〈/a1〉 arrives.

Now, suppose b2’s predicate fails to match, then c5c13c17

in b2.list would be unlinked from the queue by destroyList
(b2.list) when 〈/b2〉 is read. As a result, c11 and c15 can be
flushed to the user immediately, since c11 has reached the
head of the queue.

Since the global queue collects nodes in the document order,
all answer nodes output by LQ are in the document order.
It is easy to see that while LQ does not have extra time or
space complexity compared to that of U-LQ, in practice LQ
might use more buffering space than U-LQ, since LQ might
have to delay flushing some confirmed answer nodes in order
to output the answer nodes in the document order.

Theorem 2. For all queries in Univariate XPath, the
LQ algorithm correctly outputs all answer nodes in the docu-
ment order. It has time complexity O(|D||Q|), caching-space
complexity O(|Q|·r), and buffering-space complexity O(|D|).
Theorem 2 shows that Univariate XPath can be efficiently
evaluated in the same O(|D||Q|) time in the streaming en-
vironment as in the non-streaming environment [18].

4. EAGER QUERYING ALGORITHM (EQ)
Although LQ achieves O(|D||Q|) time performance, it does

not reach optimal buffering-space performance. It can be
seen from Figure 7 that, once d12 arrives, there is enough
information to confirm buffered nodes, c5 and c11, as answer
nodes. Thus, they can be flushed to the user immediately.
Also, c13, c15, and c17 can be confirmed as answer nodes
and be flushed as soon as they arrive. That is, the size of
buffering space can be reduced from 4 nodes in U-LQ (or
from 5 nodes in LQ) to 2 nodes. The reason for the lower
buffering-space performance of LQ is that it lazily evaluates
the predicates only when the closing tags of the streaming
elements are encountered (line 7 in Algorithm 6). Motivated
by this, in this section we propose an eager stream-querying
algorithm EQ, which improves buffering-space performance,
while not trading off time performance.

4.1 Query Preprocessing
The query table for EQ includes two extra fields: (1)

axis child[cn], for axis nodes only, which records the column
number of the axis-node/result-node child of cn. (2) PF [cn]
(predicate fanout), which is the size of p children[cn].

EQ uses four more fields for some stacks. (1) the parent
pointer. Given a stack[cn] element e, e.parent is a pointer
to the closest ancestor of e among all stack[parent[cn]] el-
ements. The left arrows between stacks in Figure 9 illus-
trate parent pointers. (2) the child pointer, for the stacks
of axis nodes only. Given a stack[cn] element e′, e′.child
points to the closest descendant, say e, of e′ among all
stack[axis child[cn]] elements such that e.parent = e′, and
is NULL if such e does not exist. The right arrows between
stacks in Figure 10 illustrate child pointers. For example,
b14.child = c15 while b12.child = NULL and b10.child =
NULL, since c15.parent = b14. Note that in Figures 9 and
10, all stack elements come from the same path in a data
tree, and the subscript number of each stack element indi-
cates (but is not exactly4) the depth of that element in the
data tree. For simplicity, we do not show parent pointers in
4Note that for simplicity, we do not show all stacks of the query.

275

�
���
���

��� 	
���� �������� ������

���
���
� ���

	��
	��
	��
	 �
	 � �

�!
 � �
 � �
�� �
 �

��"
� � �# �%$
� �
� ���

&����'�()�+*-,
� � �
� � !
� � �
� � �

(� �
(� "
(.���
(.� �# � $

� ��! 	 � " � �
� � �

, �%�

�$# � $

/
0
1
2
3
4
5

6

7
8

9
:
;

<�=�>�? & ' & >�@ *�) ?�< +*BA%��C�	�� "%D

E , > &�FHG
� � �

� $# � $

����I

� $
! $

" $� �J�
� �

? *�) ?+<

Figure 9: U-EQ: bottom up Evaluate(U).

Figure 10; they can be inferred from the subscript numbers
of stack elements. (3)-(4) the self and up bits, for the stacks
of axis nodes and result node only. Given a stack[cn] element
e, e.self indicates whether e has a match with Qself (cn), i.e.,
whether e.flags has been evaluated to true, and e.up indi-
cates whether e has a match with Qup(cn), where Qself (cn)
and Qup(cn) are as illustrated in Figure 2.

4.2 Algorithm
We first describe our U-EQ algorithm, in which answer nodes
might be output not in the document order. Similarly to Al-
gorithms 3 and 4, U-EQ iteratively calls procedures start-
Block and endBlock (Algorithms 7 and 8) in the c-sequence
order and in the reverse c-sequence order, respectively. Here
we address queries with AND predicates only. It is straight-
forward to extend U-EQ to address queries with the AND,
OR and NOT operators.

The main work of U-EQ is lines 7-8 in Algorithm 7. In line
7, bottom up Evaluate(cn) (BUE) eagerly evaluates a pred-
icate as soon as an atom in that predicate becomes true.
BUE works in a bottom-up way. Figure 9 illustrates this
process, in which the ↑ symbol in a white square indicates
that that bit is being flipped from 0 to 1 by this BUE call,
and the left arrows with numbers indicate the go-forward
path of this BUE call. Also, the path from node B to node
S in the query is logically partitioned into three segments
by removing all // edges on that path. The main idea of
BUE is that given a stack[cn] element e, BUE evaluates
e.flags as soon as a corresponding bit in e.flags is flipped
to 1. If e.flags is evaluated to true (in this case we say that
e becomes activated), then BUE goes forward to e.parent
and flips e.parent.flags[pos[cn]] to 1. Otherwise, BUE has
to go down to the lower segment-tail element. In Figure
9, u33 flips s24.f lags[u] to 1, which activates s24. Thus,
BUE goes forward to p23. But p23 cannot be activated,
and thus BUE has to go down to s22. The remaining pro-
cess follows similar rules. When the axis-node elements b11

and b5 become activated, their self bits are flipped to 1,
and then they are pushed into aStack that is eventually re-
turned by this BUE call. Finally, clearPredStackS↑(K, i28)
is called, which destroys all those stack[K] elements whose
depth is smaller than i28.depth, and then recursively calls
clearPredStackS↑(M, k30) and clearPredStackS↑(L, k30).
BUE terminates as soon as it finds that i4.f lags[k] has been
set to 1 earlier (which implies that no more elements will
become activated even if BUE continues).

In line 8, top down Propagate(aStack) (TDP) processes
the axis-node elements returned by BUE (whose self bits
were just flipped to 1 in BUE), as illustrated in Figure 105.
If the up bits of those elements have been set to 1, then TDP
will try flipping the up bits of their corresponding descen-

5Here we assume that the six stack[B] elements in Figure 10 corre-
spond to the six stack[B] elements in Figure 9, respectively.

���
� � � � �

�
	

�
�

�������� ����������� ���� ������ �! ��"$#
%�& ����')(

��*
��+
���$�
� � *
� * �

!�,
! � "
! � -
! � ,

�
! - �.

 � .
 � /
�-0�
 - *
 -1/

2 � 3
2 � 4
2 -$-
2 - ,

2 3 ��/
� � +
� -$.
��-$4
� * "

5 -$"

5 - +

5 46

7�8����� �����8����� ���� ���1�� �2 -$-1#

&�9 � ��� 5 &�9 � ��� 5 &:9 � ��� 5 &:9 � ��� 5 &�9 � ��� 5 &�9 � �7� 5

5 -$3; � < ; -$<
; * < ; , <

; .1<
; "$<

! * -

Figure 10: U-EQ: top down Propagate(b10b14).

���
�

��� ���

	
��

���������� ����������

���
�����

��� ������� � � !

�"�
�

��� ���

	
��

��#������� ��$�������
��� ���%��� �
 !

���
� 	

��

��&�����'� ��$�����(�
) *�+

) � +

� ��� � � ��,�- ��.�/ ����0 .21 	�3 ��
 4

���
��� �

Figure 11: U-EQ (same query/data as in Figure 7).
dant elements to 1 in a top-down way. Specifically, given
a stack[cn] element e, TDP checks the value of e.self as
soon as e.up is flipped to 1. If e.self has been set to 1
(in this case we say that e becomes activated), then TDP
goes forward to e′.child in stack[axis child[cn]] and flips
e′.child.up to 1, where e′ is the lowest element in stack[cn]
that is e itself or e’s descendant with e′.child 6= NULL.
Otherwise, BUE has to go up to the upper segment-head
element. In Figure 10, initially, b10 is activated. Then TDP
goes forward to b14.child, c15, since b10.child and b12.child
are NULL, before clearAxisStackS(B, b10) is called to de-
stroy those stack[A] and stack[B] elements whose depth is
greater than b10.depth. Meanwhile, all nodes buffered in the
lists of the cleared elements and of b10 can be flushed im-
mediately as answer nodes, since (1) b10 has matches with
Qup(B) and Qself (B), and (2) these buffered nodes have
matches with Qdown(C). Also, clearPredStackS↓(A, a11)
and clearPredStackS↓(B, b12) are called to recursively de-
stroy the corresponding upper elements in the stacks of the
descendant predicate nodes of A and B, based on a11.depth
and b12.depth, respectively. Next, c15.up is flipped to 1. But
c15 cannot be activated, and thus TDP goes up to c17. The
remaining process follows similar rules. Note that TDP will
terminate as soon as it reaches an element whose up bit has
been set to 1 earlier (which implies that no more elements
will become activated even if TDP continues).

Example 4. Figure 11 shows a running example for U-
EQ. When 〈d12〉 is read, BUE(D) (line 7 in Algorithm 7)
is called and returns a1a8. Then, TDP (a1a8) is called (line
8 in Algorithm 7): a1 becomes activated first, and then b2

becomes activated. Finally, a8 and b9 are cleared, and c5 in
b2.list and c11 in b9.list are flushed as answer nodes. Later,
when c13, c15, and c17 arrive, they are flushed immediately,
since b2.up = 1 and b2.self = 1 (line 11 in Algorithm 7).
As a result, throughout the processing, U-EQ only needs to
buffer at most 2 nodes, c5 and c11, rather than 4 nodes in
U-LQ and 5 nodes in LQ (see Examples 2 and 3).

Now, suppose that edge (b2, c17) in the data tree in Figure
7 is extended to a path b2-ax-by-c17; ax and by never need
to be pushed into stacks, because when ax arrives, b2.up = 1
and b2.self = 1 (lines 17-19 in Algorithm 7). Thus, c17 will
still be flushed as soon as it arrives.

Note that U-EQ::startBlock(cn, id) seems to have partic-
ularly high time costs, since both BUE and TDP might visit
a lot of elements in stacks. However, such costs are amor-

276

Algorithm 7: Procedure U-EQ::startBlock(cn, id)

cp = parent[cn]; if stack[cp] is empty then return;1
p = top(stack[cp]);2
if type[cn] 6= ‘p’ or p.flags[pos[cn]] = 0 then3

if axis[cn] = ‘//’ or p.depth+1 = depth then4
if leaf[cn] = true then5

if type[cn] = ‘p’ then6
aStack = bottom up Evaluate(cn);7
top down Propagate(aStack);8

else if type[cn] = ‘r’ then9
b = newBufferNode(id);10
if p.up & p.self = 1 then flushNode(b);11
else appendNode(p.list, b);12

else13
if type[cn] = ‘p’ then14

s = newElement(stack[cn], depth);15

else if type[cn] = ‘a’ then16
if stack[ch = host[cn]] is not empty then17

h = top(stack[ch]);18
if h.up & h.self = 1 then return;19

s = newElement(stack[cn], depth);20

else s = newElement(stack[cn], depth, id);21
s.parent = p;22
if type[cn] = ‘a’ or type[cn] = ‘r’ then23

s.up = p.up & p.self;24
if PF[cn] = 0 then s.self = 1;25
else s.self = 0;26
s.child = NULL;27
if p.child = NULL then p.child = s;28

push(stack[cn], s);29

tized when the closing tags of these stack elements are pro-
cessed in future: U-EQ::endBlock(cn) works in O(1) time,
since it does not need to do the work of passing / evaluating
s.flags as lines 6-7 in Algorithm 6 do6: all such work has
been transferred into BUE in U-EQ::startBlock(cn, id).

Further, the key point for BUE is that during the lifetime
of each stack[cn] element e, each bit in e.flags is flipped
from 0 to 1 at most once (by some BUE call), since BUE
terminates as soon as it finds that the corresponding bit in
e.flags that it is trying to flip to 1 has been set to 1 ear-
lier. Each such flip action causes e.flags to be evaluated
once, to test whether e will be activated. That is, e.flags
is evaluated at most PF [cn] times. We can create a counter
field for each stack element e, to record the number of bits
in e.flags that have been set to 1. The value of e.counter
is initialized to 0 and is incremented by 1 every time a bit
in e.flags is flipped to 1. Then, e.flags can be evaluated in
O(1) time by simply checking whether e.counter = PF [cn].
Therefore, on the whole, each stack[cn] element takes only
O(max{PF [cn], 1}) time for the BUE computation during
its lifetime, although a BUE call may visit many stack ele-
ments. Similarly, each axis-node/result-node stack element
e takes O(1) time for the TDP computation during its life-
time, since e.up is flipped from 0 to 1 at most once. (Recall
that TDP terminates as soon as it finds that an up bit that
it is trying to flip to 1 has been set to 1 earlier.) Other-
wise, as in LF and LQ, all clearStackS functions in BUE
and TDP have O(1) amortized time cost for each cleared
stack element, which does not need to be processed further
in future. Therefore, on the whole, each stack element has
O(max{PF [cn], 1}) time cost in U-EQ, as in LQ.

6In addition, line 14 in U-EQ::endBlock(cn) has the O(1) amortized
time cost, as discussed in Section 3.2.

Algorithm 8: Procedure U-EQ::endBlock(cn)

if leaf[cn] = true or stack[cn] is empty then return;1
s = top(stack[cn]);2
if s.depth = depth then3

pop(stack[cn]);4
if type[cn] = ‘a’ or type[cn] = ‘r’ then5

cp = parent[cn]; p = top(stack[cp]);6
if p.child = s then p.child = NULL;7
if type[cn] = ‘a’ then8

if s.self = 1 then appendList(p.list, s.list);9
else10

if stack[ch = host[cn]] is not empty then11
h = top(stack[ch]);12
appendList(h.list, s.list);13

else destroyList(s.list);14

destroy(s);15

It is easy to see that U-EQ has the same caching-space
complexity O(|Q| · r) as LQ. Also, similarly to LQ, U-EQ
has O(|D|) buffering-space complexity in the worst case.
Such complexity is unavoidable for any stream-querying al-
gorithm. (See the worst-case example in Section 1.1.) How-
ever, unlike LQ, U-EQ is able to save buffering space sig-
nificantly, as illustrated by the simple best-case example in
Section 1.1 and by Example 4. In fact, U-EQ achieves op-
timal buffering-space performance, since it always flushes
confirmed answer nodes out of memory as soon as possible,
and never buffers any answer nodes unnecessarily. Further,
similarly to the procedure of Section 3.3, we can extend U-
EQ to a full EQ algorithm, called EQ, which outputs answer
nodes in the document order by using a global queue. This
does not incur extra complexity over that of U-EQ.

Theorem 3. For all queries in Univariate XPath, the
EQ algorithm correctly outputs all answer nodes in the docu-
ment order. It has time complexity O(|D||Q|), has caching-
space complexity O(|Q| · r), and achieves optimal buffering-
space performance.

Theorem 3 shows that for the problem of evaluating Uni-
variate XPath over streams, optimal time performance and
optimal space performance can be achieved at the same
time.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
In this section we compare the performance of our al-

gorithms with that of two state-of-the-art XPath stream-
querying systems, TwigM [10] and XSQ [27]. These two
systems, in particular TwigM, have shown comprehensive
performance advantages over many stream-querying systems
[10]. Other XPath or XQuery stream-querying systems,
such as BEA/XQRL [17], TurboXPath [22], XAOS [5] and
XSM [25], are not publicly available at this time, while some
publicly available XPath or XQuery querying systems, such
as Galax [16], XMLTaskForce [18] and Saxon [23], use non-
streaming algorithms. XSQ is an open-source system [26],
while TwigM is not publicly available at this time; we imple-
mented it based on the algorithm described in [10]. All the
algorithms were implemented using Java 1.4.2, and called
the same SAX XML parser (Xerces2-Java XML Parser 2.8.1
[2]). We ran all the experiments on a 2GHz Pentium4 ma-
chine with 2GB memory running Windows Server 2003.

277

���������	��
�
�������������������������
�	�	�����! "���$#%�'&

($)$�
((+*�,

)�)��-(/.�0�*

1��	�2
3�)$�
)�*�4�5',
4�6��5073

8����������	2
(('49�
(/6�6�6,
($)'��:0	:

;����	2

Figure 12: Datasets for the experimental evaluation.

���������	��
�
������	������
��	����������������! �"��	�
�	#$�����������%�	��
�'&)(��	�����������*��	���%��	+��
�	,$�����������%�	��
�'&)(��%�%���+��%*������������%�
�-'�����������%�	��
�'&)(��	��������������! �"��	��*��������%�	��
�'&)(��%�%���+��%*������������%�
�	.$�����������%�	��
�'&)(��	����������/"��01(�������%+���*��	2'&)(�����! �"��	��*��	���%��	+��

�	3$�����	4	5��	�6�5	�	��6	6
�%78������9$&)(��6�5�*����	45��	�	6�6
�	:$������9$&)(��5�5�*����	65��	�	6�6	5
�	;$�����	4	5<&=(���5	5	��>�6%*��	�	6�5'&?*��	2
����@A�B����9$&)(��	C�CD"���0E�	5	5�*����6	5'&)(����4	F	GH"���0D(��I>!6�*��	��J	J

F	
�
�K0�"��"%�����

L��������"���H0"%��"������

���	�M�B���	N�������
��'&=(������%�%0������"���0	*��	��������O�������
����#A�B���	N���
N�+���	N%��%�
�'&)(��N���
	���	+���*��	�����%�������	�
����,A�B����
N%���P�"��������
��'&=(��I�!�������"�+�*��	�I��0	0����	�	N%��%�
�	�%�	�
����-<�B����
N%���P�"��������
������%
N	���P�"������%��
�<&=(���N	�I�OQ�"��R�*���2
����.A�B���I���� '&)(��	��N�"�R� �����S"���01(������TI�ON	N��O���%*��	�� �"��	+O��
�U�� �"��	+�&)(���0"%����*����

VW�"�	�X0�"���"%�����

Figure 13: Queries for the experimental evaluation.
We tested the performance of all algorithms on three data-

sets (Figure 12): (1) the Book dataset, which is a synthetic
dataset generated using IBM’s XML Generator [15] (with
NumberLevels = 20 and MaxRepeats = 9), based on a real
Book DTD from W3C XQuery Use Cases [31]. The Book
DTD includes only one recursive element, section. That is,
different section nodes can be nested on the same path in
the data tree. (2) the Treebank dataset [30], which is a real
dataset with a narrow and deeply recursive structure that
includes multiple recursive elements. (3) the XMark dataset
(with factor = 1) [28], which is a well-known benchmark
dataset. This dataset does not include recursive elements.

On each of the three datasets, we tested 5 queries, as
shown in Figure 13. These queries include / and // axes,
∗-node tests, and predicates. We used queries with AND
operators only, since neither TwigM nor XSQ support other
operators, and XSQ even does not support AND operators.
Further, XSQ does not support same-name nodes or ∗-node
tests, and requires that each axis node have at most one
(/-axis) predicate node child. Thus, some queries listed in
Figure 13 are not supported by XSQ, and we use N/A to
indicate such cases in Figures 14 and 15.

5.2 Time Performance
We tested the CPU time performance of the stream-query-

ing algorithms, measuring it as T = ttotal− tin− tout, where
ttotal is the total running time, tin is the time taken by read-
ing (from disk into memory) and parsing XML documents,
and tout is the time taken by outputting the query results
from memory to disk. Figure 14 shows the CPU time per-
formance of our algorithms, of TwigM, and of XSQ on the
three datasets. From this figure we can see that EQ and LQ
have the best time performance among all the algorithms.
This performance advantage is rather intuitive: As shown
in Theorems 2 and 3, both LQ and EQ have O(|D||Q|) time
complexity, and thus other factors, such as recursion in XML
data or the size of buffering space, have no impact on their
time performance. We now summarize several main obser-
vations based on Figure 14.

(1) XSQ has much higher time costs than the other al-
gorithms in all applicable test cases. This is intuitive, since
XSQ has exponential time complexity O(|D|·2|Q| ·r|Q|) (Sec-
tion 1.2), while EQ, LQ, and TwigM each have polynomial
time complexity. In particular, in presence of deep recur-
sion in XML data, e.g., when evaluating Q7 or Q8 on the
Treebank dataset (Figure 14 (b)), XSQ reports ”there are
too many path combinations for one element”, and termi-
nates running. The reason is, XSQ exhaustively enumerates
all potential main-path pattern matches for each potential
answer node, and the number of such matches might reach
r|Q| in the worst case [10].

(2) EQ and LQ show different degrees of time-performance
advantages over TwigM on different datasets.

On the Book dataset, EQ and LQ have a marked perfor-
mance advantage over TwigM for Q2 through Q5. As we can
observe from the time complexity O(|D||Q|(|Q|+dD ·B)) of
TwigM (Section 1.2), the size of the run-time buffering space
has a significant impact on the time performance of TwigM.
Figure 15 (a) shows the buffering-space size of TwigM for
Q1 through Q5 on the Book dataset. From this figure we
can see that TwigM has high buffering-space costs for Q2

through Q5, which results in its high time costs for these
queries. Note that O(|D||Q|(|Q|+dD ·B)) serves only as the
theoretical upper bound of the time complexity of TwigM.
It does not imply that each streaming element in D requires
O(B) processing time. In fact, there might be only a few
query-relevant streaming elements that require O(B) pro-
cessing time (for the expensive set-union operation [10] that
is used to eliminate duplicate copies of buffered nodes). In
particular, most query-irrelevant streaming elements (such
as g3 in Figure 4) can be simply discarded in O(1) time by
hashing. On the other hand, TwigM’s time performance is
similar to that of EQ and LQ on Q1, since the Book dataset
is not recursive w.r.t Q1 (the axis of section in Q1 is /).
When there is no recursion, TwigM does not need to buffer
duplicate copies of potential answer nodes, and thus does
not incur the O(B) set-union costs anymore. That is, in
non-recursive cases, the size of the run-time buffering space
has no impact on the time performance of TwigM. Thus,
TwigM has the same O(|D||Q|) time complexity as EQ and
LQ in non-recursive cases.

On the Treebank dataset, the performance advantage of
EQ and LQ over TwigM is not as pronounced as on the Book
dataset. The reason is, while Treebank is deeply recursive,
it is a very narrow dataset, on which TwigM has very low
buffering space costs, as indicated by Figure 15 (b). De-
spite this, EQ and LQ still have a performance advantage
over TwigM on this dataset, mainly due to the impact of
the deeply recursive structure of this dataset on the time
performance of TwigM.

On the XMark dataset, TwigM’s time performance is very
similar to that of EQ and LQ, since XMark is a non-recursive
dataset. As discussed above, TwigM has O(|D||Q|) time
complexity in non-recursive cases.

(3) EQ and LQ show stable time performance for differ-
ent queries in each fixed dataset, except for some queries
involving ∗-node tests. For example, in Figure 14 (b), EQ
and LQ have markedly higher costs for Q9 than for other
queries. The reason is, for such queries all streaming ele-
ments become query-relevant (w.r.t. ∗-nodes). Thus, no el-
ements can be simply discarded during the stream-querying
process.

278

�

�

�

�

�

�

��
� 	

��	
�
�� �
�

��� ��� ��������� "!��#%$ &('

)�*,+)-*,+
.0/ .�1 .�2 .43 .�5

6%798 :<;=;=> ?@7BA@7DCFE=A

�

�

�

�

�

�

��
� 	

��	
�
�� �
�

��� ��� ��������� "!��

#%$�& #'$(&

)+*

,%- ,/. ,10 ,32 ,5476

8:9<; =�>@?�?A9<BDC<E FGBIHGBKJD?LH

M M �

�

�

�

�

�

��
� 	

��	
�
�� �
�

��� ��� ��������� "!��

#�$&% #'$(%

)+*)-,)-,

.0/�/ .0/21 .0/43 .5/76 .5/+8

9;:=< >@?BA�CED F=AHG=ABI�J@G

Figure 14: Query time7.

�
�����������
�����������
�����������
	 ���������

����������
�����������
�����������
����������
�����������
�������������

��
��
��
���
�� �
��
� �
�� �
��

�! "# $&%('*),+ -/.#

021�3�4�5�3�4�5�3�1�6

7�8:9 ;=<><>? @A8CBA8EDGF>B

HJI HLK H#M HON H#P
1 1 QSRUT QSRUT �

���

�����

�����

�����

�����

�����

	

��
�
���
�� �
�

� �
�� �
��

��� ��� � �"!$# % &('��

)+*-, ."/10"02*436547 8939:93<;60=:

>
?A@ ?�B ?DC ?AE ?GF�H

> I I JAKML JAKNL �
�����������
�����������
�����������
	 ���������

����������
�����������
�����������
����������
�����������
�������������

��
��
��
���
�� �
��
� �
�� �
��

�! "# $&%('*),+ -/.0

13254 687:9(;=< >59@?59:A(B8?

CEDGF*DGF*DGF*D�H
IKJ#J IKJ�L IMJ�N IOJ�P IMJ�Q

CSR�F�TUDGF�TUDGF�R�H CEDGF*D�V�F*D�V�FXW3Y[Z\HR T�VR W3Y[Z

Figure 15: Size of buffering space (number of nodes)7.
(4) Our two O(|D||Q|)-time stream-querying algorithms,

EQ and LQ, show very similar time performance in practice,
as can be seen from Figure 14. The maximum and average
difference between their time performance is 7% and 3%,
respectively.

5.3 Memory Space Performance
The caching-space costs of stream-querying algorithms de-

pend on the number of elements cached in the run-time
stack(s), which is bounded by the maximum document depth
dD when queries do not involve ∗-nodes or same-name nodes,
and does not exceed |Q| · dD in the worst case. Many prac-
tical XML documents are not very deep. Thus, the caching-
space costs of stream-querying algorithms are almost always
negligible in practice. As we observed in our test cases, the
number of stack elements cached by each algorithm does
not exceed 40 on the Book dataset and 25 on the Treebank
dataset at any running time, and in particular, is at most 3
on the XMark dataset, since each stack only needs to cache
at most one corresponding element in non-recursive cases.
On the other hand, stream-querying algorithms could typi-
cally have very high buffering-space costs in practice, since
hundreds of thousands of potential answer nodes might have
to be buffered, see Figures 15 (a) and (c). Therefore, the
run-time memory usage of stream querying is typically dom-
inated by buffering space. In Figure 15 we compare the
buffering-space size of EQ, LQ, TwigM, and XSQ7. Note
that TwigM and XSQ might buffer multiple physical copies
of a potential answer node at the same time. Thus, their
buffering-space size is measured using the maximal number
of physical copies of potential answer nodes buffered at the
same time during the running time. We now summarize
several main observations based on Figure 15.

7‘N/A’ means that XSQ does not support this query type, while ‘∗’
means that XSQ reports ”there are too many path combinations for
one element” due to the deeply recursive structure of Treebank, and
terminates running.

(1) Buffering-space costs could be very large in practice,
depending on the structure of XML data, on the specific
queries, and on the query-evaluation strategy. For example,
for Q14 in Figure 15, the lazy algorithms LQ and TwigM
have to buffer almost 90K nodes. The reason is, the open
auctions element in the XMark dataset has a very large
number of open auction child elements, most of which have
a privacy child element. Therefore, Q14 has a very large
number of answer nodes in this dataset. The lazy strategy
has to buffer all these answer nodes until 〈/open auctions〉
arrives. It is easy to see that there will be a lot more (than
90K) nodes that need to be buffered when Q9 is lazily eval-
uated on other larger XMark datasets (with higher value
of the factor parameter). On the other hand, queries on
the Treebank dataset need very little buffering space, since
Treebank is a narrow dataset.

(2) EQ always has the lowest buffering-space costs among
all the algorithms. This is intuitive; as we discussed in Sec-
tion 4, EQ always flushes buffered answer nodes as soon
as possible, and thus achieves optimal buffering-space per-
formance. Although XSQ also eagerly evaluates queries, it
sometimes has to buffer multiple physical copies of some po-
tential answer nodes. Thus, XSQ could have higher buffering-
space costs than EQ in some cases, e.g. for Q2 in Figure 15
(a). Both LQ and TwigM use the lazy strategy to evaluate
queries, and therefore have higher buffering-space costs than
EQ in most test cases. However, compared to LQ, TwigM
might have to sometimes buffer multiple physical copies of
some potential answer nodes. Thus, TwigM typically has
higher buffering-space costs than LQ, see Figures 15 (a) and
(b). Note that compared to other algorithms, the amount of
buffering space EQ saves could be very large. For example,
for Q14 in Figure 15 (c), EQ only needs to buffer at most
64 nodes, while LQ and TwigM have to buffer almost 90K
nodes.

(3) In non-recursive cases, EQ and XSQ have the same
buffering-space costs, while LQ and TwigM have the same
buffering-space costs, as shown in Figure 15 (c). The reason

279

is, both EQ and XSQ use the eager strategy to evaluate
queries, while both LQ and TwigM use the lazy strategy to
evaluate queries. In non-recursive cases, XSQ and TwigM
do not have to buffer multiple physical copies of potential
answer nodes.

5.4 Summary
Our experiments illustrate two points.
(1) Our algorithms EQ and LQ show the best time perfor-

mance among all the tested algorithms in practice, which is
consistent with their good O(|D||Q|) worst-case time com-
plexity. In presence of recursion, they have a marked time-
performance advantage over the state-of-the-art stream-que-
rying algorithm TwigM. At the same time, they guarantee
time performance that is similar to that of TwigM in the
absence of recursion.

(2) EQ shows the best buffering-space performance among
all the tested algorithms in practice, which is due to the
fact that EQ eagerly evaluates queries and buffers only one
physical copy of each potential answer node. In particular,
compared to the other algorithms, the amount of buffering
space EQ saves could be very large.

6. CONCLUSION
In this paper we revisited the XPath stream-querying prob-

lem and showed that a practical XPath fragment, Univariate
XPath [3], can be efficiently evaluated in O(|D||Q|) time
in the streaming environment. Specifically, we proposed
two stream-querying algorithms, LQ and EQ, which are
based on the lazy strategy and on the eager strategy, re-
spectively. To the best of our knowledge, our algorithms are
the first XPath stream-querying algorithms that guarantee
O(|D||Q|) worst-case time performance. Moreover, LQ and
EQ achieve O(|D| |Q|) time performance without trading
off space performance. Instead, they have better buffering-
space performance than the state-of-the-art algorithms that
use the lazy or eager strategy, respectively. In particular,
EQ achieves the optimal buffering-space performance.

We showed that our algorithms are not only of theoreti-
cal value. The results of our extensive performance evalu-
ation show that our algorithms have considerable practical
time and space performance advantages over the state-of-
the-art algorithms in presence of recursion. When there is
no recursion, our algorithms’ performance is guaranteed to
be similar to that of the state-of-the-art algorithms. We
have observed that our algorithms LQ and EQ show similar
time performance in practice, but EQ has better buffering-
space performance than LQ. Therefore, we select EQ as the
best-performance representative of our algorithms. We are
currently extending EQ to evaluate more expressive classes
of XML queries over streams, such as multi-variate XPath
[4], XPath with backward axes [5], and XQuery-like queries
[22].

7. REFERENCES
[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,

D. Srivastava, and Y. Wu. Structural joins: a primitive for
efficient XML query pattern matching. ICDE Conference,
2002.

[2] Apache. Apache Xerces2-Java XML Parser.
http://xerces.apache.org/xerces2-j/.

[3] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the
memory requirements of XPath evaluation over XML
streams. Proceedings of PODS, 2004.

[4] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in
query evaluation over XML streams. Proceedings of PODS,
2005.

[5] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josifovski. Streaming XPath
processing with forward and backward axes. ICDE
Conference, 2003.

[6] S. Boag, D. Chamberlin, M. F. Ferandez, D. Florescu,
J. Robie, and J. Simeon. XQuery 1.0: An XML Query
Language. W3C, http://www.w3.org/TR/xquery/, 2003.

[7] D. Brownell and D. Megginson. SAX: Simple API for XML.
SAX Project Organization, http://www.saxproject.org/.

[8] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. SIGMOD, 2002.

[9] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi.
Efficient filtering of XML documents with XPath
expressions. ICDE Conference, 2002.

[10] Y. Chen, S. B. Davidson, and Y. Zheng. An efficient XPath
query processor for XML streams. ICDE, 2006.

[11] B. Choi. What are real DTDs like? WebDB Workshop,
2002.

[12] J. Clark. XML Transformations (XSLT) Version 1.0. W3C,
http://www.w3.org/TR/xslt/, 1999.

[13] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C, http://www.w3.org/TR/xpath/, 1999.

[14] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M.
Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM Transactions on
Database Systems (TODS), 28:467–516, 2003.

[15] A. L. Diaz and D. Lovell. IBM’s XML generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator.

[16] M. Fernandez and et al. Galax: an implementation of
XQuery. http://www.galaxquery.org/.

[17] D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, M. J. Carey, A. Sundararajan,
and G. Agrawal. The BEA/XQRL streaming XQuery
processor. VLDB Conference, 2003.

[18] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms
for processing XPath queries. VLDB Conference, 2002.

[19] G. Gottlob, C. Koch, and R. Pichler. The complexity of
XPath query evaluation. Proceedings of PODS, 2003.

[20] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and
D. Suciu. Processing XML streams with deterministic
automata and stream indexes. ACM Transactions on
Database Systems (TODS), 29:752–788, 2004.

[21] A. K. Gupta and D. Suciu. Stream processing of XPath
queries with predicates. SIGMOD Conference, 2003.

[22] V. Josifovski, M. Fontoura, and A. Barta. Querying XML
streams. VLDB Journal, 14(2):197–210, 2005.

[23] M. Kay. Saxon: the XSLT and XQuery processor.
http://saxon.sourceforge.net/.

[24] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based scheduling of event processors and buffer
minimization for queries on structured data streams. VLDB
Conference, 2004.

[25] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou.
A transducer-based XML query processor. VLDB, 2002.

[26] F. Peng and S. S. Chawathe. XSQ: A streaming XPath
engine. http://www.cs.umd.edu/projects/xsq/.

[27] F. Peng and S. S. Chawathe. XSQ: A streaming XPath
engine. ACM Transactions on Database Systems (TODS),
30:577–623, 2005.

[28] A. Schmidt and et al. XMark: an XML benchmark project.
http://monetdb.cwi.nl/xml/.

[29] L. Segoufin. Typing and querying XML documents: some
complexity bounds. Proceedings of PODS, 2003.

[30] D. Suciu. XML data repository.
http://www.cs.washington.edu/research/xmldatasets/.

[31] W3C. Section 1.2.2, XML query use cases.
http://www.w3.org/TR/xquery-use-cases/, 2006.

280

