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Abstract. The satisfiability test checks, whether or not the evaluation of a query 

returns the empty set for any input document, and can be used in query optimi-

zation for avoiding the submission and the computation of unsatisfiable queries. 

Thus, applying the satisfiability test before executing a query can save process-

ing time and query costs. We focus on the satisfiability problem for queries 

formulated in the XML query language XPath, and propose a schema-based 

approach to the satisfiability test of XPath queries, which checks whether or not 

an XPath query conforms to the constraints in a given schema. If an XPath 

query does not conform to the constraints given in the schema, the evaluation of 

the query will return an empty result for any valid XML document. Thus, the 

XPath query is unsatisfiable.  We present a complexity analysis of our ap-

proach, which proves that our approach is efficient for typical cases. We present 

an experimental analysis of our developed prototype, which shows the optimi-

zation potential of avoiding the evaluation of unsatisfiable queries. 

1   Introduction 

XPath (see [29] and [30]) is either a standalone XML query language or is embedded 

in other XML languages (e.g. XSLT, XQuery, XLink and XPointer) for specifying 

node sets in XML documents. An important issue in XPath evaluation is the satisfi-

ability problem of XPath queries. An XPath query Q is unsatisfiable, if the evaluation 

of Q on any XML document returns every time an empty result. Therefore, the satisfi-

ability test of XPath queries plays a critical role in query optimization. The application 

of the satisfiability test can avoid the submission and the unnecessary evaluation of 

unsatisfiable queries, thus saving processing time and query cost. As well as for query 

optimization, the XPath satisfiablity test is also important for consistency problems, 

e.g. XML access control [6] and type-checking of transformations [19]. Therefore, 

many research efforts focus on the satisfiability test of XPath queries with or without 

respect to schemas, e.g. [2], [10], [11], [14], [17] and [18]. 

 

In the absence of schemas, the satisfiability test can detect that the structure properties 

of XPath queries are inconsistent with the XML data model (e.g. [14]). For example, 

the XPath query Q1=/parent::a is unsatisfiable, because the document node has no 

parent node according to the XML data model. The query Q2=//regions/america is 

tested as a satisfiable XPath query without respect to a schema. However, according to 

a given schema, e.g. the schema given in [8], the element regions can have children, 

which are called namerica and samerica, but does not have children with name america. 

Therefore, Q2 is unsatisfiable with respect to the given schema. Thus, we can detect 

more errors in XPath queries if we additionally consider schema information. There-

fore, we focus on the satisfiability test of XPath in the presence of schemas. 

 

The most widely used schema languages are XML Schema (see [31] and [32]) and 

DTD (see [28]). In this paper, we focus on XML Schema for the definition of sche-

mas. As well as imposing the constraints of the structure and semantic on XML docu-

ments as DTDs do, the XML Schema language provides powerful capabilities for 

specifying data types on elements and attributes, most of which are not expressible in 

DTDs. The XML Schema language provides a large number of built in simple types 

and allows deriving new types for the values of elements and attributes, which are 

only specified to be character data in DTDs. Thus, if the types of values of elements 



or attributes in an XPath query do not conform to constraints specified in the XML 

Schema definition, the XPath query selects an empty set of nodes for any valid XML 

document. For example, the query meeting[@date=‘01-05-06’] does not retrieve anything 

if the type of the attribute date is declared to have the format DD-MM-YYYY. Therefore, 

the powerful data-typing facilities supported by XML Schema provide another dimen-

sion for the satisfiability test of XPath queries. Since XML Schema can express more 

restrictions than a DTD, a DTD can be easily transformed into an XML Schema rep-

resentation, but in general, an XML Schema definition cannot be transformed into a 

DTD without loosing information. To the best of our knowledge, existing work only 

deals with DTDs except our previous contributions (see [10] and [11]).  

 

Our schema-based approach checks whether or not an XPath query Q conforms to the 

structure, semantic, data type and occurrence constraints in a given XML schema 

definition S by evaluating Q on S rather than the instance documents of S. If Q does 

not conform to the constraints of S, Q cannot be evaluated completely on S, and thus Q 

is unsatisfiable. For schemas, our approach supports the recursive as well as non-

recursive schemas, considers a significant part of the XML Schema language and 

allows arbitrary nesting and references of model groups. For XPath, our approach 

allows all XPath axes and negation operations in predicates. The satisfiability test for 

the XPath subset supported by our approach in the presence of the schemas supported 

by our approach is undecidable (see [2]). Therefore, we present an incomplete, but 

fast satisfiability tester, i.e. if our tester returns unsatisfiable, then we are sure that the 

XPath query is unsatisfiable, but if our tester returns maybe satisfiable, then the XPath 

query may be satisfiable or may be unsatisfiable. Note that we do not loose correct-

ness in the proposed application scenarios of our satisfiability tester when using an 

incomplete tester. 

 

This paper is an extended version of [10] and [11]. We extend the contributions of 

[10] and [11] by significantly extending the supported subset (see Section 2.2) of the 

XML Schema language, allowing various content models of elements and arbitrary 

nesting of model groups; by supporting the type-checking of values of elements and 

attributes (see Section 4.5) and the checking of occurrence constraints (see Section 

4.6); by integrating all new contributions into the prototype of [11] and by additional 

experiments (see Section 6). 

 

The rest of the paper is organized as follows: Section 2 describes the supported sub-

sets of XPath and XML Schema. Section 3 develops a data model for XML Schema. 

This data model for XML Schema is the basis for our XPath-XSchema evaluator (see 

Section 4), which evaluates XPath queries on XML Schema definitions in order to 

compute the schema paths of the queries. Section 4 also includes a complexity analy-

sis of the approach. Section 5 discusses the satisfiability test of XPath based on the 

schema paths. We present a comprehensive performance analysis in Section 6. Section 

7 deals with further related work. We end up with the summary and conclusions in 

Section 8. 

2  XPath and XML Schema 

In this section, we present the subset of the XPath language and the subset of XML 

Schema language supported in this work. 

2.1 XPath 

XPath (see [29] and [30]) is a query language for XML data. In this paper, we con-

sider the basic properties of the XPath language, and the abstract syntax of the sup-

ported XPath subset is defined in EBNF as follows: 

 

Pattern  e ::=  e|e | /e | e/e | e[q] | a::n. 

Predicate q ::=  e | e=C | e=e | q and q | q or q | not(q) | (q). 



Axis   a::=  child | attribute | descendant | self | following | preceding |  

                parent | ancestor | DoS | AoS | FS | PS. 

Nodetest  n ::=  label | ∗ | node() | text(). 
 

where label is an element or attribute name and C is a literal, i.e. a string or a number. 

Furthermore, we write DoS for descendant-or-self, AoS for ancestor-or-self, FS for following-

sibling and PS for preceding-sibling.  

 

The semantic of each pattern is defined in terms of the semantic of its sub-patterns. 

The smallest pattern is called a location step a::n[q1]…[qi], which consists of an axis a 

and a nodetest n with or without predicates q1, …, qi, e.g. child::title and descen-

dant::section[child::∗]. Axis and nodetest of a location step select a set of XML nodes 

relevant to a context node, which is further filtered by the predicates. Location steps 

are separated by the token ‘/’, and the nodes selected by a location step are the context 

nodes of the next location step.  

 

The XPath language also defines several abbreviations, e.g. /child::a is abbreviated to 

/a, and // represents /descendant-or-self::node()/. Whenever possible, we will use the 

abbreviated syntax in this paper as more compact representation. 

2.2 XML Schema 

XML Schema (see [31] and [32]) is a language for defining a class of XML docu-

ments, called instance documents of the schema. We call a schema, which is formu-

lated in the XML Schema language, an XML Schema definition (or XSchema as short 

name), which is itself an XML document. An XSchema defines the structure of the 

instance documents, the vocabulary (e.g. the element and attribute names used), and 

the data types of elements and attributes. In this paper, we support a significant subset 

of the XML Schema language, where a given XSchema must conform to the following 

EBNF rules. 

 
            XSchema ::= <schema> (simpleTypeD | complexTypeD | groupD | attributeGroupD | 

                     elementD | attributeD)∗ </schema>. 

simpleTypeD ::= <simpleType (name=NCName)?> restrictionSimpleTypeD </simpleType>. 

restrictionSimpleTypeD ::= <restriction base=QName> facet∗ </restriction>. 

facet ::=  <minExclusive  value=Value /> | <minInclusive value=Value /> |  

               <maxExlusive value=Value /> | <maxInclusive value=Value /> |  

               <totalDigits value=Value /> | <fractionDigits value=Value /> |                

               <length value=Value /> | <minLength value=Value /> |  

               <maxLength value=Value /> | <enumeration value=Value /> | 

               <whiteSpace value=Value /> | <pattern value=Value />. 

complexTypeD ::= <complexType (mixed=Boolean)? (name=NCName)?> (simpleContentD |  

               complexContentD | ((groupD | allD | choiceD | sequenceD)? (attributeD |  

               attributeGroupD)∗)) </complexType>. 

simpleContentD  ::= <simpleContent> (restrictionSimpleContent | extensionSimpleContent) 

               </simpleContent>. 

complexContentD ::= <complexContent (mixed= Boolean)?>  

               (restrictionComplexContent | extensionComplexContent) </complexContent>. 

restrictionSimpleContent ::= <restriction base=QName> facet∗ (attributeD | attributeGroupD)∗  

               </restriction>. 

extensionSimpleContent ::= <extension base=QName> (attributeD | attributeGroupD)∗ </extension> 

restrictionComplexContent ::= <restriction base= ‘anyType’> 

                (attributeD | attributeGroupD)∗ </restriction>. 

extensionComplexContent ::= <extension base=QName> ((groupD | allD | choiceD |  

                sequenceD)? (attributeD | attributeGroupD)∗) </restriction> 

groupD ::= <group (maxOccurs=(nonNegativeInteger | ‘unbounded’))?  

               (minOccurs=nonNegativeInteger)? (name=NCName | ref=QName)?>  

               (allD | choiceD | sequenceD)? </group>. 

attributeGroupD ::= <attributeGroup (name=NCName | ref=QName)?>  

              (attributeD | attributeGroupD)∗ </attributeGroup> 

allD ::= <all maxOccurs= ‘1’ minOccurs=(‘0’ | ‘1’)> elementD∗ </all> 

choiceD ::= <choice (maxOccurs=(nonNegativeInteger | ‘unbounded’))?  



              (minOccurs=nonNegativeInteger)?> (elementD | groupD | choiceD | sequenceD)∗ </choice>. 

sequenceD ::= <sequence (maxOccurs=(nonNegativeInteger | ‘unbounded’))?  

              (minOccurs=nonNegativeInteger)?> (elementD | groupD | choiceD | sequenceD)∗ 

              </sequence>. 

elementD ::= <element (fixed=string)? (maxOccurs=(nonNegativeInteger | ‘unbounded’))? 

            (minOccurs=nonNegativeInteger)? (Name=NCName | ref=QName)? (type=QName)?> 

            (simpleTypeD | complexTypeD)? </element> 

attributeD ::= <attribute (fixed=string)? (name=NCName | ref=QName)? (type=QName)? 

                  (use=(‘optional’ | ‘prohibited’ | ‘required’))?>  simpleTypeD? </attribute> 

 

where QName (see [32]) is an XML qualified name , NCName (see [32]) is an XML 

non-colonized name, Boolean is a boolean value, i.e. true or false , nonNegativeInteger is 

a non negative integer, string is a character string, and Value is a value, e.g. a number 

or a string.  

 

Example 1: Figure 1 presents an example of an XML Schema definition bib.xsd, 

which describes a schema for XML documents containing information about journal 

articles. Figure 2 contains an example XML document, which conforms to the XML 

Schema definition of Figure 1.    

 
(D1) <schema> 

(D2)      <group name='journalArticle'> 

(D3)    <sequence> 

(D4)      <element name='article' minOccurs='1' maxOccurs='1'> 

(D5)        <complexType> 

(D6)          <sequence> 

(D7)            <element name='title' minOccurs='0' maxOccurs='1' type='string'/> 

(D8)            <element name='year' minOccurs='0' maxOccurs='1' type='string'/> 

(D9)            <element name='journal' minOccurs='0' maxOccurs='1' type='string'/> 

(D10)            <element name='refs' minOccurs='0' maxOccurs='1'> 

(D11)              <complexType> 

(D12)                <group ref='journalArticle'  minOccurs='0' maxOccurs='unbounded'/> 

             </complexType> 

                            </element> 

        </sequence> 

      </complexType> 

    </element> 

   </sequence> 

 </group> 

  

(D13)        <element name='bib'> 

(D14)          <complexType> 

(D15)            <group ref='journalArticle' minOccurs='0' maxOccurs='unbounded'/> 

                   </complexType> 

                 </element> 

               </schema> 

Figure 1: An XML Schema definition bib.xsd 



 

<bib> 

 <article> 

  <title> My second article </title> 

  <year> 2007 </year> 

  <journal> Well-Known Journal (WKJ) </journal> 

  <refs> 

<article> 

    <title> My first article </title> 

<year> 2006 </year> 

    <journal> Well-Known Journal (WKJ) </journal> 

    <refs/> 

   </article> 

</refs> 

 </article> 

</bib> 

Figure 2: Example XML document conforming to the XML Schema definition of 

Figure 1 

3   Data Model for the XML Schema Language 

Based-on the data model for the XML language given by [24], we develop a data 

model for XML Schema for identifying the navigation paths of XPath queries on an 

XML Schema definition.  

3.1 Notations 

The following notations on sets, relationships and sequences are used to model the 

XML Schema definition, and are also used to model the schema path (see Section 4). 

Set(T) (or Sequence(T) respectively) indicates the type of a set (or of a sequence re-

spectively) the entries of which are of type T. We write ∅ for the empty set, ∈ for 

membership and ∪ for the union of sets. We express the signature of a function f  by 

f:T1→T2, where T1 is the type of the domain and T2 is the type of the co-domain. Note 

that a type T can be a simple type, e.g. an XSchema node (Node), an XPath expression 

(XPath) or a node test (NodeTest). Furthermore, T can be a type of a set the entries of 

which are of a type T1, i.e. Set(T1), a type of a sequence the entries of which are of a 

type T1, i.e. Sequence(T1), or the cross-product of two or more types, e.g. T1xT2. The 

transitive closure f 
+ and reflexive transitive closure f* of a function f:T→Set(T) are 

defined as follows: 

 

f n(x) = { z | y∈f n-1(x) ∧ z∈f (y) }, where  f 0(x) = {x} and f 1(x) = f (x) 

f 
+(x)  =  ∪n=1

∞ f n(x)  

    f *(x)  =  ∪n=0
∞ f n(x)  

 

We write (x1, …, xm) for a sequence of entries x1, …, xm. We use the operator + to con-

catenate two sequences, e.g. (x1, …, xm) + (y1, …, yn) = (x1, …, xm, y1, …, yn). Let s be a 

sequence, then we write s[k] for the k-th entry of the sequence s, and write |s| for the 

length of s, i.e. the number of entries in s. Thus, s[1] indicates the first entry of s and 

s[|s|] indicates the last entry of s, s[|s|-1] indicates the pre-last entry of s, and so on. 

Furthermore, we also call a node in an XML Schema definition an XSchema node. 

3.2 Concepts 

An XML Schema definition is a set of nodes of type Node. There are three specific 

Node types in an XML Schema definition, which are associated with instance element, 

instance attribute and instance text nodes of the XML Schema definition: iElement, 

iAttribute and iText. Accordingly, we define three functions with signature 



Node→Boolean to test the type of a node: isiElement, isiAttribute, and isiText, which re-

turn true if the type of the given node is of type iElement, iAttribute or iText respectively, 

otherwise false. 

 

Definition 1 (instance nodes): The instance nodes of an XML Schema definition are 

• <element name=N…> (which is an instance element node of type iElement), 
• <attribute name=N…> (which is an instance attribute node of type iAttribute), 
• attribute node type=T of nodes <element type=T…>,  which we denote as @<type=T> 

(which is an instance text node of type iText, if T is a built-in simple type), 
• <simpleType…> (which is an instance text node of type iText), 
• <complexType mixed= ‘true’…> (which is an instance text node of type iText),  
• <simpleContent…> (which is an instance text node of type iText), and 
• <complexContent mixed= ‘true’…> (which is an instance text node of type iText). 

Definition 2 (instance child node): Let x and y be two XSchema nodes of type iEle-

ment. If the element defined in y can appear in instance XML documents as a child of 

the element defined in x, then y is an instance child node of x. 

Definition 3 (instance text node): Let x be an XSchema node of type iElement, and y 

be an XSchema node of type iText. If y is an attribute node of x or a node that is used 

to define the type of the element declared in x, then y is an instance text node of x. 

Definition 4 (instance attribute node): Let x be an XSchema node of type iElement, 

and y be an XSchema node of type iAttribute. If the attribute defined in y can appear in 

instance XML documents as an attribute of the element defined in x, then y is an in-

stance attribute node of x. 

Definition 5 (instance parent node): Let x be an XSchema node of type iElement, 

and y be either an instance child node or an instance text node or an instance attribute 

node of x, then x is the instance parent node of y. 

Definition 6 (instance sibling, instance preceding sibling and instance following 

sibling node): Let x be an XSchema node of type iElement or iText, and y be an 

XSchema node of type iElement or iText. If the element that is defined in x or the text 

whose data type is defined in x can appear in valid XML documents as a sibling, or a 

preceding sibling, or a following sibling respectively of the element that is defined in y 

or the text whose data-type is defined in y, then x is an instance sibling node, or an 

instance preceding sibling node, or an instance following sibling node respectively of 

y.  

Definition 7 (succeeding node): A node N2 in an XML Schema definition is a suc-
ceeding node of a node N1 in the XML Schema definition if 
• N2 is a child node of N1, or  
• N1=<element type=N…> and N2=<simpleType name=N…> with the same N, or 
• N1=<attribute type=N…> and N2=<simpleType name=N…> with the same N, or 
• N1=<element type=N…> and N2=<complexType name=N…> with the same N, or 
• N1=<element ref=N…> and N2=<element name=N…> with the same N, or 
• N1=<attribute ref=N…> and N2=<attribute name=N…> with the same N, or 
• N1=<group ref=N…> and N2=<group name=N…> with the same N, or 
• N1=<attributeGroup ref=N> and N2=<attributeGroup name=N> with the same N, or 
• N1=<restriction base=N> and N2=<simpleType name=N…> with the same N, or 
• N1=<extension base=N> and N2=<simpleType name=N…> with the same N, or 
• N1=<extension base=N> and N2=<complexType name=N…> with the same N. 

 
Definition 8 (preceding node): Node N1 in an XML Schema definition is a preceding 
node of a node N2 in the XML Schema definition if N2 is a succeeding node of N1. 

3.3 Functions 

Figure 3 defines the data model of the XML Schema language, which consists of a 

group of functions. These functions relate an XSchema node to a set of XSchema 



nodes or to a set of sequences of XSchema nodes, or relate a sequence of XSchema 

nodes to a set of sequences of XSchema nodes, represented in comprehension notation 

(see [24]).  

 

The function child: Node → Set(Node) relates an XSchema node to all its child nodes; 

the function succeeding: Node → Set(Node) relates an XSchema node to all its succeed-

ing nodes; the function preceding: Node → Set(Node) relates an XSchema node to all its 

preceding nodes.  

 

iChild: Node → Set(Sequence(Node)), which is defined to find the instance child nodes 

of type iElement of an XScheme node N, relates the XSchema node N to a set of 

XSchema node sequences, i.e. if y∈iChild(N), then y[1]=N and y[|y|] is an instance child 

node of N. Other nodes in y are the intermediate nodes visited when searching for y[|y|] 

of y[1], i.e. ones that belong to both succeeding+(y[1]) and preceding+(y[|y|]). Some of 

them may be the declaration nodes of model groups, which control the occurrence of 

y[|y|], and the occurrence order of y[|y|] and its instance sibling nodes in an instance 

XML document. iAttributeChild: Node → Set(Sequence(Node)), which is defined to find 

the instance attribute nodes of an XSchema node N, relates the node N to a set of node 

sequences, i.e. if y∈iAttribueChild(N), then y[1]=N and y[|y|] is an instance attribute node 

of N. Other nodes in y are the intermediate nodes visited when searching for y[|y|] of 

y[1], i.e. ones that belong to both succeeding+(y[1]) and preceding+(y[|y|]). The auxiliary 

function iChild-helper: Node → Set(Sequence(Node)) helps iChild(N) and iAttributeChild(N) 

to find the corresponding nodes, and returns all the node sequences visited before the 

instance child nodes and instance attribute nodes of the XSchema node N.  

 

iTextChild: Node → Set(Sequence(Node)) is defined to find the instance text nodes of an 

XSchema node N, and relates the node N to a set of node sequences. Let 

y∈iTextChild(N), then y[1]=N and y[|y|] is an instance text node of N. The nodes between 

y[1] and y[|y|] are the intermediate nodes visited when searching for y[|y|] of y[1], i.e. the 

nodes that belong to both succeeding+(y[1]) and preceding+(y[|y|]). The auxiliary function 

attributeNode(N’, type=T) in iTextChild(N) returns the attribute node type=T of the node N’. 

The XML data model defines that an element of simple type must have and only has a 

text node, and that an element of complex type can either have one or more text nodes 

or have no text node at all. XML Schema specifies whether or not an element of com-

plex type has text nodes, but does not specify the number of the text nodes. Therefore, 

we only need to take care whether or not an XSchema node has instance text nodes, 

and we only need to find one instance text node but not all the instance text nodes of 

an XSchema node. We achieve these goals by using the auxiliary function iText-helper: 

Node → Set(Sequence(Node)). 

 

If N of iText-helper(N) declares an element of simple type, then N must have instance 

text nodes, which are either the attribute node type=T of N if T is a built-in simple type, 

or the nodes <simpleType…> in succedding+(N). If N declares an element e of complex 

type, then there must exist a node of a complex type declaration, i.e. 

D=<complexType…>, which is used to define the type of the element e, i.e. D is a node 

in succedding+(N). If D contains the construct mixed= ‘true’, then D is an instance text 

node of N. If D is not an instance text node of N, but D has a child node of <simpleCon-

tent…> or <complexContent mixed=‘true’…>, then the child node of D is the instance text 

node of N. If D does not have such a child, then N does not have instance text nodes. 

Let y∈iText-helper(N), then y[1]=N, and y[|y|] is either an instance text node, or the node 

<complexType…>, or a node visited before an instance text node or before an instance 

attribute node or before the node <complexType…> of N. The auxiliary function built-

in(T) in iText-helper(N) tests whether or not the type T is a built-in simple type. 

 
Different from the XML data model, where a node has only a parent node, in XML 

Schema definitions, a node may have several instance parent nodes. Thus, the function 

iPS: Sequence(Node) → Set(Sequence(Node)) for finding the instance preceding sibling 

nodes and the function iFS: Sequence(Node) → Set(Sequence(Node)) for finding the 

instance following sibling nodes relate a sequence x of nodes to a set of sequences of 



nodes. The first node in x is the instance parent node of the last node of x. Let y be a 

node sequence in iPS(x), then y[1]=x[1], and y[|y|] is both an instance child node or an 

instance text node of y[1] and an instance preceding sibling node of x[|x|].  

 

Since the XML Schema does not specify the position of the instance text nodes of a 

node N that defines an element e of complex type, we assume that a text child of the 

element e may appear before or after other children of the element e in any instance 

XML document. If y[|y|]=<complexType mixed=‘true’…> or y[|y|]=<complexContent 

mixed=‘true’…>, then y[|y|] is an instance text node of y[1] that defines an element of 

complex type. Thus, a text child of the element can appear before or after other chil-

dren of the element in any instance XML document. However, if N defines an element 

e of complex type, which has attributes and the text child but has no element children, 

then the text child is the only child of e. Thus, the instance text node <simpleContent…> 

of N has no instance sibling nodes. Similarly, the text child of an element of simple 

type is the only child of the element, so the instance text node of a node that defines an 

element of simple type has no instance sibling nodes. If y[|y|]=<simpleContent…> or 

y[|y|]=@<type=T> or y[y]=<simpleType…>, then y[|y|] is an instance text node of y[1],  and 

thus y[|y|] has no instance preceding and following sibling nodes. 

 

A node N2=y[|y|] is an instance preceding sibling node of the instance node N1=x[|x|], 

i.e. y is a node sequence in iPS(x), if N2 is an instance child node of N=x[1] in the case 

that N1 and N2 are contained in an all model group, or if N2 is an instance child node 

of N in the case that there is at least a model group, which either directly or recursively 

contains both N1 and N2, is declared with maxOccurs>1, or if N2 is an instance child 

node of N, and N2 is visited before N1 in the XML Schema definition, in the case that 

all the model groups, which either directly or recursively contain both x and y, consist 

of only sequence and choice groups, which are declared with maxOccurs=1. In the 

latter, N2 is not an instance sibling node of N1, if N1 and N2 are contained in a com-

mon choice group, and either N1 or N2 must be directly contained in the choice group.  

 

x[|x|] and y[|y|] have some common ancestor nodes, some of which may be the model 

groups that either directly or recursively contain x[|x|] and y[|y|]. The common ancestor 

nodes are the nodes from x[1] to x[k] if ∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, 

|y|), where the function min(|x|, |y|) returns the minimum of |x| and |y|. Among these 

common ancestor nodes, x[1] is the instance parent node of x[|x|] and y[|y|], and thus the 

possible model group nodes in these common ancestor nodes are the nodes from x[2] 

to x[k]. If x[|x|]=y[|y|] , then x=y. In this case, whether or not x[|x|] is a sibling node of 

itself relies on the occurrence constraints of x[|x|]. If x[|x|] can occur more than one 

time, i.e. ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1, then x[|x|] is either a preceding 

sibling node or a following sibling node of itself.  

 

XML Schema stipulates that an all group must appear as the sole child at the top of a 

content model, and the content model of an all group consists of element declarations, 

i.e. <all…> elementD∗ </all>. Therefore, if x[k]=<all>, then x[|x|] and y[|y|] are contained in 

an all group, and thus the element declared in x[|x|] may appear before or after the 

element declared in y[|y|] in any valid XML document. If there is at least one node in 

(x[2], …, x[k]) defined with maxOccurs>1, i.e. ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1, 

then the element declared in x[|x|] may appear before or after the element declared in 

y[|y|] in any valid XML document. If (x[2], …, x[k]) does not contain an all group and 

each model group in the sequence is defined with maxOccurs=1, then the element de-

clared in x[|x|] and the element declared in y[|y|] appear in an XML instance document 

in the same order as the visited order of the node x[|x|] and the node y[|y|]. The visited 

order is defined by the order in which y[k+1] and x[k+1] appear in the XML Schema 

definition. Let N1 and N2 be two nodes in an XML Schema definition, then N1<N2 

indicates that N1 appears before N2 in the XML Schema definition. However, if x[k] is 

the node <choice>, then the element defined in x[|x|] and the element defined in y[|y|] 

cannot appear simultaneously in any XML instance document. Therefore, y[|y|] is not 

an instance sibling node of x[|x|], and thus y is not a node sequence of iPS(x). The auxil-

iary function attribute(N, attributeName) returns the value of the attribute attributeName in 



node N,  e.g. attribute(N, ‘maxOccurs’) retrieves the value of the attribute with the name 

maxOccurs in node N. 

 

• child(N) = { N1 | N1 is a child node of N } 

• succeeding(N) = { N1 | N1 is a succeeding node of N } 

• preceding(N) = { N1 | N1 is a preceding node of N } 

• iChild-helper(N) = ∪i=0
∞ Si, where 

S0 = { (N) }, 

         Si = { y+(N1) | y∈Si-1 ∧ N1∈succeeding(y[|y|]) ∧  

           ¬isiElement(N1) ∧ ¬isiAttribute(N1) } 

• iChild(N) = { y+(N1) | y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧ isiElement(N1) } 

• iAttributeChild(N) = { y+(N1) | y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧  

       isiAttribute(N1) } 

• iText-helper(N) = ∪i=0
∞ Ri, where 

R0 = { (N) },  

         Ri = { y+(N1) | y∈Ri-1 ∧ N’= y[|y|] ∧  ¬isiText(N’) ∧ ¬isiAttribute(N’) ∧  

N’≠<complexType…> ∧ (  

N’≠<element type=T…> ∨ 

( N’=<element type=T> ∧ ¬built-in(T) )) ∧ 

N1∈succeeding(N’)  } 

• iTextChild(N) = { y | ( y∈iText-helper(N) ∧ isiText(y[|y|]) ) ∨ 

( y=z+(N1) ∧ z∈iText-helper(N) ∧ N’= z[|z|] ∧ ¬isiText(N’) ∧ isiText(N1) ∧ ( 

  ( N’=<element type=T…> ∧ N1=attributeNode(N’, type=T) ) ∨  

( N’=<complexType…> ∧ N1∈succeding(N’) )))} 

• iPS(x) = { y | ( y∈iChild(x[1]) ∨ y∈iTextChild(x[1]) ) ∧  

 y[|y|]≠@<type=T> ∧ y[y]≠<simpleType…> ∧ y[y]≠ <simpleContent…> ∧ ( 

( y[|y|]=<complexType mixed=‘true’…> ∨ y[|y|]=<complexContent mixed=‘true’…> ) 

∨ 

( x[|x|]=<complexType mixed=‘true’…> ∨ x[|x|]=<complexContent mixed=‘true’…> ) 

∨ 

( x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1 ) 

∨ 

( ∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ ( 

x[k]=<all> ∨ 

 ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1 ∨ 

  ( y[k+1]<x[k+1] ∧ ∀i∈{2, 3, ..., k}: ( 

                                       x[i]=<sequence maxOccurs=1…> ∨  

                                       x[i]=<choice maxOccurs=1…> ∨ 

          x[i]=<group maxOccurs=1…> ∨  

          ( x[i]≠<sequence…> ∧ x[i]≠<choice…> ∧  

            x[i]≠<group…> ∧ x[i]≠<all…> )) ∧   

  x[k]≠<choice…> ))))} 

• iFS(x) = { y | ( y∈iChild(x[1]) ∨ y∈iTextChild(x[1]) ) ∧  

 y[|y|]≠@<type=T> ∧ y[y]≠<simpleType…> ∧ y[y]≠ <simpleContent…> ∧ ( 

( y[|y|]=<complexType mixed=‘true’…> ∨ y[|y|]=<complexContent mixed=‘true’…> ) 

∨ 

( x[|x|]=<complexType mixed=‘true’…> ∨ x[|x|]=<complexContent mixed=‘true’…> ) 

∨ 

( x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1 ) 

∨ 

( ∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ (  

x[k]=<all> ∨ 

             ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1 ∨ 

            ( x[k+1]<y[k+1] ∧ ∀i∈{2, 3, ..., k}: ( 

                                   x[i]=<sequence maxOccurs=1…> ∨  

                                   x[i]=<choice maxOccurs=1…> ∨ 

                                   x[i]=<group maxOccurs=1…> ∨ 

                                   ( x[i]≠<sequence…> ∧ x[i]≠<choice…> ∧ 



             x[i]≠<group…> ∧ x[i]≠<all…> )) ∧ 

                            x[k]≠<choice…> ))))} 

           

Figure 3. A data model of XML Schema for evaluating XPath queries on XML 

Schema definitions 

 

The function NT: Node × NodeTest → Boolean, which tests an instance XSchema node 

N against a node test of XPath, is defined as: 
 

• NT(N, ∗∗∗∗) = isiElement(N) ∨ isiAttribute(N)                   
• NT(N, label) = ( isiElement(N) ∧ attribute(N, ‘name’)=label )   ∨  
                           ( isiAttribute(N) ∧ attribute(N, ‘name’)=label )       
• NT(N, text()) = isiText(N)                                        
• NT(N, node()) = true 

4   XPath-XSchema Evaluator 

A common XPath evaluator is typically constructed to evaluate XPath queries on 

XML documents. Our approach evaluates XPath queries on XML Schema definitions 

rather than on the instance documents of schemas in order to test the satisfiability of 

XPath with respect to schemas. Therefore, we name our XPath evaluator XPath-

XSchema evaluator.  

4.1 Schema paths 

Instead of computing the node set of XML documents specified by an XPath query, 

our XPath-XSchema evaluator computes a set of schema paths to the possible resul-

tant nodes, when the XPath query is evaluated by a common XPath evaluator on XML 

instance documents. If an XPath query cannot be evaluated completely, the schema 

paths for the XPath query are computed to an empty set of schema paths.  

 

Definition 9 (Schema paths): A schema path the type of which we denote by 

schema_path is a sequence of pointers to either the schema path records <XP’, S, z, lp, 

f>, or the schema path records <o, f>, or schema path records <e> where 

• XP’ is an XPath expression, 
• S is a set of sequences of XSchema nodes, 
• z is a set of pointers to schema path records, 
• lp is a set of schema paths, 
• f is a set of sets of schema paths ,  
• e is a predicate expression self::node()=C,  where C is a literal, i.e. a number or a 

string, and 
• o is a keyword and o ∈ {=, or, and, not}. 

 

Let Q be an XPath query, which is the input of our XPath-XSchema evaluator, and 

Q=XPe/XPc/XPr, where XPe is the part, which has been evaluated, XPc is the part, which 

is being evaluated, and XPr is the part, which has not been evaluated so far by the 

XPath-XSchema evaluator. In a schema path record, XP’=XPe. XP’ is needed for the 

detection of loop schema paths. S is a set of sequences of XSchema nodes and the last 

node Nl in each sequence s of S is an instance node, which is visited by the XPath-

XSchema evaluator when evaluating XPc, and which is also a context node to compute 

the following nodes. The first node Nf of s is an instance parent node of Nl, and other 

nodes in s are ones that are visited when searching for Nl of Nf, some of which may be 

the nodes of model groups and are useful for consistency checking of occurrence 

constraints and sequences. The field z in a schema record R is a set of pointers to the 

schema path records in which the last schema node of the node sequences is the in-

stance parent node of the last schema node of the node sequences of the record R. 

Note whenever an instance XSchema node is the first node of a loop, the node has 

more than one possible instance parent node, and thus there are several sequences of 

nodes and pointers in a schema path record. lp represents loop schema paths; f repre-



sents the schema paths computed from the predicates that tests the last node of S, 

which is the context node of the predicates . The schema paths can consist of predicate 

expressions, i.e. {(<self::node()=C>)}. o represents operators like =, or, and and not.  

 

Example 2: Our XPath-XSchema evaluator evaluates an XPath query Q in Figure 4 

on the XML Schema definition of Figure 1 and computes the schema paths presented 

in Figure 5. Figure 6 is the graphical representation of Figure 5, in which we only 

present the last node of the node sequences in a schema path record rather than the 

entire record for simplicity of presentation and readability, and the node is the most 

relevant XSchema node.  

 

Q selects the parent node refs of the node article, which is a descendant node of the 

document node bib. The node article has two predicates. The first predicate qualifies 

that the node article must have children year. The second predicate qualifies that the 

node article cannot have children editor, or the node article may have children editor, but 

the children editor cannot have bib nodes as ancestor nodes.  

 

Our XPath-XSchema evaluator first evaluates the very first part / of Q, and computes 

the first schema path record <Q, {(/)}, -, -, -> (c.f. line 2 of Figure 7 in Section 4). The 

first location step bib selects the instance child node D13 of the document node D1. 

There are no other nodes visited after D1 and before D13, such that the set of the node 

sequences is {(D1, D13)}. When evaluating //artile, the first selected instance child node 

of D13 is D4, other nodes visited between D13 and D4 are D14, D15, D2, D3 in this 

order. The instance child nodes of D4 are D7, D8, D9 and D10, and thus the following 

schema paths are computed:  

 
{ (R1, R2, R3, <S2, {(D4, D5, D6, D7)}, {R3}, -, ->), 
  (R1, R2, R3, <S2, {(D4, D5, D6, D8)}, {R3}, -, ->), 
  (R1, R2, R3, <S2, {(D4, D5, D6, D9)}, {R3}, -, ->), 

  (R1, R2, R3, <S2, {(D4, D5, D6, D10)}, {R3}, -, ->) }. 

 

Since D7, D8 and D9 are not the resultant nodes of the location //artile and they do not 

have any descendant nodes either, the schema paths of these branches are computed to 

empty. The instance child node of D10 is D4 and the corresponding node sequence is 

D10, D11, D12, D2, D3, D4. The schema paths are now 

 
(R1)   { (<Q,  {(/)},   -,    -,   -> , 
(R2)      <S1, {(D1, D13)}, {R1},  -,  ->,         
(R3)      <S2, {(D13, D14, D15, D2, D3, D4)}, {R2}, -, ->  
(R4)      <S2, {(D4, D5, D6, D10)}, {R3}, -, ->,  

(R5)      <S2, {(D10, D11, D12, D2, D3, D4)}, {R4}, -, ->) }. 

 

The resultant schema paths of //article are  

 
(R1)   { (<Q,   {(/)},   -,    -,   -> , 
(R2)      <S1, {(D1, D13)}, {R1},  -,  ->,         
(R3)      <S2, {(D13, D14, D15, D2, D3, D4)}, {R2}, -, ->  
(R4)      <S2, {(D4, D5, D6, D10)}, {R3}, -, ->, 
(R5)      <S2, {(D10, D11, D12, D2, D3, D4)}, {R4}, -, ->),  
(R6)      <S2, {(D4, D5, D6, D10)}, {R5}, -, ->, 
              … ) } 

 

A loop occurs when evaluating //article, i.e. D10 is an instance child node of D4 and D4 

is an instance child node of D10. When a loop is detected, the loop part is placed to the 

field of the loop schema paths in the record, where the last schema node of the node 

sequences is the initial node of the loop. Therefore, the schema paths are modified as 

follows: 

 
(R1)   { (<Q,   {(/)},   -,    -,   -> , 
(R2)      <S1, {(D1, D13)}, {R1},  -,  ->,         
(R3)      <S2, {(D13, D14, D15, D2, D3, D4), (D10, D11, D12, D2, D3, D4)}, {R2, R4},  
(R4)           { (<S2, {(D4, D5, D6, D10)}, {R3}, -, ->, 
(R5)              <S2, {(D10, D11, D12, D2, D3, D4)}, {R4}, -, ->) }, ->) } 
              



We present the detection of loops and the constructions of loop schema paths in Sec-

tion 4.3. 

 

The location step //article has a predicate that is and of two predicate expressions, so 

the schema paths of the predicate consists of the schema path record <o, {f1, f2}>, 

where o=‘and’ and the two schema paths f1 and f2 are computed from two predicate 

expressions respectively. The first record of the schema paths of the predicate expres-

sion year is the record, the last schema node of which is the context node of year, the 

purpose of the record is setting the context node of the predicate expression. Further-

more, since the nodes article selected by self::node() do not have a child editor, the 

schema paths of the predicate [editor] are computed to empty, and thus the evaluation 

of (self::node()[editor]/AoS::node()[self::node()=‘bib’]) is aborted after the evaluation of 

[editor]. Therefore, the schema paths of this part are computed to empty (see (R10) in 

Figure 5). We present the method to evaluate predicates in Section 4.4.  

/bib//article[year and not(self::node()[editor]/AoS::node()[self::node()=‘bib’])]/parent::refs

S2

S1

S3 S4

/bib//article[year and not(self::node()[editor]/AoS::node()[self::node()=‘bib’])]/parent::refs

S2

S1

S3 S4

 

Figure 4: Example XPath query Q and its sub-expressions 

(R1)   { (<Q,  {(/)},   -,    -,   -> , 
(R2)      <S1, {(D1, D13)},  {R1},  -,  ->,         
(R3)      <S2, {(D13, D14, D15, D2, D3, D4), (D10, D11, D12, D2, D3, D4)},  {R2, R4},  
(R4)           { (<S2,  {(D4, D5, D6, D10)},  {R3}, -, -> , 

     (R5)                     <S2, {(D10, D11, D12, D2, D3, D4)},  {R4}, -, ->) },     
(R6)                   { {(<‘and’,  
(R7)                 { {(<-, {(D13, D14, D15, D2, D3, D4),  

                     (D10, D11, D12, D2, D3, D4)},  {R2, R4}, -, ->, 
(R8)                                      <S3, {(D4, D5, D6, D8)},  {R7}, -, ->)},  
(R9)                                  {(<‘not’,  

(R10)                              ∅>)} } >)} }>, 
(R11)     <S4, {(D4, D5, D6, D10)},  {R3}, -, ->) } 

Figure 5: Schema paths of query Q 

 

Figure 6: Graphical representation of the schema paths in Figure 5, where we only 

present the last node of the node sequences of the records of the schema paths 

4.2 Evaluating XPath expressions 

We use the semantic technique to describe our XPath-XSchema evaluator, and define 

the following notations. Let z be a pointer in a schema path and d is a field of a 

schema path record, we write z.d to refer to the field d of the record to which the 

pointer z points. Let p be a schema path and |p| be the size of the schema path p, i.e. 

the number of pointers (or schema path records) in p, then p[k] indicates the k-th 



pointer (or the record to which the k-th pointer points) of the schema path p, and thus 

p[|p|].XP’ refers to the field XP’ of the last schema record of p. For readability, we often 

write that p[k] is the k-th schema path record of schema path p, instead of that p[k] is the 

k-th pointer of p, which points to a schema path record. Let S be a set of sequences of 

XSchema nodes, then S(1) indicates an arbitrary sequence of nodes in S. We use the 

operator / to express the concatenation of two XPath expressions, e.g. XP1/XP2. 

 

The semantics of the XPath-XSchema evaluator is specified by a function L (see 

Figure 7). The function L: XPath x schema_path x XPath → Set(schema_path) takes two 

XPath expressions and a schema path as the arguments and yields a set of new schema 

paths. The first XPath expression is one that is evaluated on a given XML Schema 

definition in this function, and the second XPath expression is the part XP2 of the 

given XPath query Q, which has not been evaluated so far when the function is called. 

XP2 is bound to the XP’ field of a schema path record, and this field is needed for the 

detection of loop schema paths. The schema path in this function signature is one of 

the schema paths of the part XP1 of the given XPath query Q, which has been evalu-

ated when calling this function. Thus, Q=XP1/XP2. L(XPath, schema_path, XPath) is 

defined recursively on the structure of XPath expressions (see Figure 7). 

 

• L(e1|e2, p, e1|e2) = L(e1, p, e1) ∪ L(e2, p, e2)  

• L(/e, p, /e) = L(e, p1, e), where p1=( </e, {(/)}, -, -, - > ) 

• L(e1/e2, p, e1/e2) = { p2 | p2∈L(e2, p1, e2) ∧ p1∈L(e1, p, e1/e2) } 

Figure 7: The function L: XPath x schema_path x XPath → Set(schema_path) is de-

fined recursively on the structure of XPath expressions  

4.3 Evaluating axis and node-test 

For evaluating each location step of an XPath expression, our XPath-XSchema 

evaluator first computes the axis and the node-test a::n of the location step by itera-

tively taking the last schema node from a node sequence of the last schema path re-

cord (note that the last node of all the node sequences in a schema path record are the 

same) from each schema path p in the path set as the context node (see Figure 8). The 

path set is computed from the part of the XPath query, which has been evaluated by 

the XPath-XSchema evaluator. For each resultant node r selected by a::n, L first com-

putes a node sequence s based-on the data model of the XML Schema. s[1] is the in-

stance parent node of r, s[|s|]=r and other nodes in s are intermediate ones visited when 

searching for r of s[1]. The function L then constructs a pointer e to a new schema path 

record, i.e. e→<xp’, {s}, z, -, -> and extends p to p’ by adding the pointer e at the end of 

the given schema path p, denoted by p’=p+e. In Example 2, the new schema path re-

cord e→<S4, {(D4, D5, D6, D10)}, {R3}, -, -> is generated when evaluating the part par-

ent::refs of the query Q, and is added at the end of p (see (R11) in Figure 5) by 

L(parent::refs, p, parent::refs). If no node is selected by the current location step, the 

function L computes an empty set of schema paths. For example, the part [editor] of Q 

in Example 2 is computed to empty by L(editor, p, editor) since no node is selected by 

the current location step editor and this causes that the corresponding main schema 

paths are computed to empty (see (R10) in Figure 5). 

 

In the case of recursive schemas, a loop is identified whenever the XPath-XSchema 

evaluator revisits a node N of the XML Schema definition without any progress in the 

processing of the query. In order to avoid an infinite evaluation, we do not continue 

the evaluation after the node N, once a loop has been detected. We detect loops in the 

following way: let e=<xp’, {s}, z, -, -> be a new schema path record generated when 

computing L(a::n, p, xp’). If there exists a record p[k] in p such that S(1)[|S(1)|]=s[|s|] ∧ 

S=p[k].S ∧ p[k].XP’=xp’, a loop is detected and the loop path segment is lp = (p[k+1], …, 

p[|p|], e). lp is added to the field of the loop schema paths in the schema path record 

p[k], where the loop occurs (e.g. R(4) and R(5) in Figure 5). A loop might occur when 

an XPath query contains the axis descendant, ancestor, preceding or following, which are 

boiled down to the recursive evaluation of the axis child or parent respectively. For 



computing L(descendant::n, p, xp’), we first compute pi, where pi∈L(child::∗, pi-1, xp’) ∧ pi-

1∈L(child::∗, pi-2, xp’) ∧…∧ p1=L(child::∗, p, xp’). If no loop is detected in the path pi, i.e. 

∀k∈{1, …, |pi|-1}: pi[k].XP’≠pi[|pi|].XP’ ∨ (S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ 

S2=pi[|pi|].S), then let pi’=pi  and Lr(self::n, pi’, xp’) is computed in order to construct a 

possible new path from pi. If a loop path segment (pi[k+1], …, pi[|pi|-1], pi[|pi|]) is detected 

in the path pi, i.e. ∃k∈{1, …, |pi|-1}: pi[k].XP’=pi[|pi|].XP’ ∧ S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ 

S1=pi[k].S ∧ S2=pi[|pi|].S, then the schema path record pi[k], from which the loop starts, is 

modified by integrating the new detected loop schema path, the new sequence of 

nodes and the new parent pointer, i.e. <pi[k].XP’, pi[k].S∪pi[|pi|].S, pi[k].z∪pi[|pi|].z, 

pi[k].lp∪{(pi[k+1], …, pi[|pi|-1], pi[|pi])}, pi[k].f>. Note that all the schema paths, which con-

tain the pointer to the schema path record, are also aware of this modification. When a 

loop is detected, instead of setting pi’=pi, pi’ is set to empty, i.e. if a loop is detected in 

pi, pi will not contribute to the further computation of schema paths anymore. 

 

• L(self::n, p, xp’) = { p + <xp’, S, p[|p|].z, -, -> | S=p[|p|].S ∧ NT(S(1)[|S(1)|], n) } 

• L(child::n, p, xp’) = { p + <xp’, {s}, p[|p|], -, ->  | NT(s[|s|], n) ∧ S=p[|p|].S ∧  

isiElement((S(1)[|S(1)|]) ∧ ( 

( s∈iChild(S(1)[|S(1)|]) ∧ n≠text() ) ∨  

( s∈iTextChild(S(1)[|S(1)|] ∧ (n=text() ∨ n=node()) )) } 

• Lr(self::n, p, xp’) = { p | NT(S(1)[|S(1)|], n) ∧ S=p[|p|].S } 

• L(descendant::n, p, xp’) = { p’ |  p’∈∪i=1
∞Lr(self::n, p’i, xp’) ∧ ( 

          ( pi’=pi ∧ pi∈L(child::node(), pi-1, xp’) ∧  

                ∀k∈{1, …, |pi|-1}: (  

pi[k].XP’≠pi[|pi|].XP’ ∨  

            ( S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S )) ∧ 

                      pi-1∈L(child::node(), pi-2, xp’) ∧…∧ p1∈L(child::node(), p, xp’) ) 

          ∨ 

                     ( p’i=⊥ ∧ (pi[k]→<pi[k].XP’, pi[k].S∪ pi[|pi|].S, pi[k].z∪pi[|pi|].z,  

          pi[k].lp∪{(pi[k+1], ..., pi[|pi|-1], pi[|pi|])}, pi[k].f>) ∧ 

                        ∃k∈{1, ..., |pi|-1}: (  

pi[k].XP’=pi[|pi|]XP’ ∧ S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ 

                                     S1=pi[k].S ∧ S2=pi[|pi|].S ) ∧ 

                       pi∈L(child::node(), pi-1, xp’) ∧ pi-1∈L(child::node(), pi-2, xp’) ∧ … ∧ 

                          p1∈L(child::node(), p, xp’) ))} 

• L(parent::n, p, xp’) = { p + <xp’, S, Z1.z, -, -> |  S=Z1.S ∧ Z1∈p[|p|].z ∧  

           NT(S(1)[|S(1)|], n) } 

• L(ancestor::n, p, xp’) =  { p’ | p’∈∪i=1
∞Lr(self::n, p’i, xp’) ∧ ( 

           ( pi’=pi ∧ pi∈L(parent::∗, pi-1, xp’)  ∧  

                ∀k∈{1, …, |pi|-1}: (  

pi[k].XP’≠pi[|pi|].XP’ ∨  

             ( S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S )) ∧ 

  pi-1∈L(parent::∗, pi-2, xp’) ∧ … ∧ p1∈L(parent::∗, p, xp’) )  

                    ∨ 

                     ( p’i=⊥ ∧ ( pi[k]→<pi[k].XP’, pi[k].S∪ pi[|pi|].S, pi[k].z∪pi[|pi|].z,  

            pi[k].lp∪{(pi[k+1], ..., pi[|pi|-1], pi[|pi|])}, pi[k].f> ) ∧ 

                         ∃k∈{1, ..., |pi|-1}: (  

pi[k].XP’=pi[|pi|]XP’∧  

                                   S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ S2=pi[|pi|].S ) ∧  

                pi∈L(parent::∗, pi-1, xp’)  ∧ pi-1∈L(parent::∗, pi-2, xp’) ∧ 

         … ∧ p1∈L(parent::∗, p, xp’) ))} 

• L(DoS::n, p, xp’) = L(self::n, p, xp’) ∪ L(descendant::n, p, xp’) 

• L(AoS::n, p, xp’) =  L(self::n, p, xp’) ∪ L(ancestor::n, p, xp’) 

• L(FS::n, p, xp’) = { p + <xp’, {s}, p[|p|].z, -, -> | s∈iFS(s1) ∧ NT(s[|s|], n) ∧ 

            s1∈p[|p|].S } 

• L(following::n, p, xp’) = L(AoS::node()/FS::node()/DoS::n, p, xp’) 

• L(PS::n, p, xp’) = { p + <xp’, {s}, p[|p|].z, -, -> | s∈iPS(s1) ∧ NT(s[|s|], n) ∧ 

                      s1∈p[|p|].S } 

• L(preceding::n, p, xp’) = L(AoS::node()/PS::node()/DoS::n, p, xp’) 



• L(attribute::n, p, xp’) = { p + <xp’, {s}, p[|p|], -, -> | s∈iAttribute(S(1) [|S(1)|]) ∧ 

                  NT(s[|s|], n) ∧ S=p[|p|].S } 

Figure 8: The function L: XPath x schema_path x XPath → Set(schema_path) for 

evaluating axis and node test 

4.4 Evaluating predicates 

The schema paths L(q, fp, q) of a predicate q are added into the field of the predicate 

schema paths in the record, where the last node of the field of the node sequences is 

the context node of the predicate, e.g. L(e[q], p, xp’) = {(p’[1], p’[2], …, p’[|p’|-1]) + 

<p’[|p’|].XP’, p’[|p’|].S, p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q, fp, q)> | p’∈L(e, p, xp’) ∧ L(q, fp, q)≠∅ 

∧ fp=(<-, p’[|p’|].S, p’[|p’|].z, -, ->)} (see Figure 9). fp logs the context node of the predicate 

such that we compute the schema paths of the predicate from fp. When L(q, fp, q) is 

computed to empty, the main schema paths are computed to an empty set of schema 

paths, i.e. L(e[q], p, xp’)=∅ if L(q, fp, q) =∅. When q = q1 or q2, L(q1 or q2, fp, q1 or q2) 

computes a schema path with only one record for the predicate expression q1 or q2, i.e. 

{(<‘or’, L(q1, fp, q1)∪L(q2, fp, q2)>)} that consists of a keyword or and two sets of schema 

paths computed from q1 and q2. The schema path is added into the field of predicate 

schema paths of the record, where the last node in the field of the node sequences is 

the context node of [q1 or q2]. If both L(q1, fp, q1) and L(q2, fp, q2) are computed to empty, 

the schema paths of the predicate q1 or q2 are computed to the empty set, i.e. L(q1 or q2, 

fp, q1 or q2)=∅ if L(q1, fp, q1)=∅ ∧ L(q2, fp, q2)=∅. 

 

• L(e[q], p, xp’) = { (p’[1], p’[2], …, p’[|p’|-1]) + <p’[|p’|].XP’, p’[|p’|].S, p’[|p’|].z, p’[|p’|].lp, 

p’[|p’|].f∪L(q, fp, q)> | p’∈L(e, p, xp’) ∧ L(q, fp, q)≠∅ ∧   

fp=(<-, p’[|p’|].S, p’[|p’|].z, -, ->) } 

• L(e[q1]…[qn], p, xp’) = { (p’[1], p’[2], …, p’[|p’|-1]) +  

<p’[|p’|].XP’, p’[|p’|].S, p’[|p’|].z, p’[|p’|].lp,  

  p’[|p’|].f∪L(q1, fp, q1)∪…∪L(qn, fp, qn)> | p’=L(e, p, xp’) ∧  

L(q1, fp, q1)≠∅ ∧ … ∧ L(qn, fp, qn)≠∅ ∧ 

 fp=(<-, p’[|p’|].S, p’[|p’|].z, -, ->) } 

• L(q1 and q2, fp, q1 and q2) = { (<‘and’, L(q1, fp, q1)∪L(q2, fp, q2)>) |   

L(q1, fp, q1)≠∅ ∧ L(q2, fp, q2)≠∅ } 

• L(q1 or q2, fp, q1 or q2) = { (<‘or’, L(q1, fp, q1)∪L(q2, fp, q2)>) |  

L(q1, fp, q1)≠∅ ∨ L(q2, fp, q2)≠∅ } 

• L(q1 = q2, fp, q1 = q2) = { (<‘=’, L(q1, fp, q1)∪L(q2, fp, q2)>) |  

L(q1, fp, q1)≠∅ ∧ L(q2, fp, q2)≠∅ }  

• L(not(q), fp, not(q)) = { (<‘not’, L(q, fp, q)>) } 

• L(q=C, fp, q=C) = L(q[self::node()=C], fp, q[self::node()=C]),  where q≠self::node() 

• L(self::node()=C, fp, self::node()=C) = { (<self::node()=C>) } 

Figure 9: The function L: XPath x schema_path x XPath → Set(schema_path) for 

evaluating predicates 

4.5 Integrating data type checking 

The XML Schema language defines 44 built in simple types, and allows users to de-

fine new simple types. If the value of an element or an attribute in an XPath query 

does not conform to the type of the value of the element or the attribute specified in 

the given XML Schema definition, the XPath query selects an empty set of nodes for 

any XML document, which is valid according to the given XML Schema definition. 

Therefore, integration of data type checking, when evaluating XPath queries on an 

XML Schema definition, can detect more unsatisfiable queries. 

 

The data type checking is involved in the computation of the schema paths of the 

predicate expression self::node()=C, and thus we modify the function L(self::node()=C, p, 

self::node()=C) in order to integrate type-checking (see Figure 10). In the XPath lan-



guage, the value of an element is the text node of the element, and thus e.g. two predi-

cate expressions child::mark=1.0 and child::mark/child::text()=1.0 are semantically equal. 

Therefore, if the node selected by self::node() is an element node, we evaluate 

child::text()/self::node()=C rather than self::node()=C in order to make the node selected by 

self::node() be a text node. If the constant C of the predicate expression self::node()=C 

conforms to the type of the value of the node specified by self::node(), the predicate 

expression itself as the schema paths is added to the field of the predicate schema 

paths of the record, the last node of the node sequences of which is the context node 

of the predicate expression. If C does not conform to the type constraints, the predi-

cate expression self::node()=C is computed to the empty set of schema paths, i.e. 

L(self::node()=C, p, self::node()=C)=∅, and thus the corresponding main schema paths are 

computed to the empty set of schema paths. The auxiliary function typeChecking(type, 

C) validates whether or not the constant C conforms to the given type; the auxiliary 

function valueType(N) returns the type of the value of the element or the attribute de-

clared in the node N and the restricting facets of the value.  

 

• L(self::node()=C, p, self::node()=C) =  { p1 | ( 

( p1∈L(child::text()/self::node()=C, p, child::text()/self::node()=C) ∧  

  ¬isiText(N) ∧ ¬isiAttribute(N) ∧ N=S(1)[|S(1)|] ∧ S=p[|p|].S ) 

∨ 

( p1=(<self::node()=C>) ∧ (isiText(N) ∨ isiAttribute(N)) ∧  

     N=S(1)[|S(1)|] ∧ S=p[|p|].S ∧ typeChecking(valueType(N), C) ∧ ( 

( valueType(N)=(T, -) ∧ ( 

N=@<type=T> ∨  

( N=<attribute type=T…> ∧ built-in(T) )))  

        ∨ 

         ( valueType(N)=computeType(N1, facets) ∧ ( 

        ( N=<attribute type=T…> ∧ ¬built-in(T) ∧  

  N1∈succeeding(N) ∧ N1=<simpleType name=T...> )  

               ∨  

   ( N=<attribute…> ∧ attributeNode(N, type=T)=⊥ ∧  

  N1∈child(N) ∧ N1=<simpleType…> )) ∧ 

                       |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null )  

        ∨ 

            ( valueType(N)=(‘string’, -) ∧ ( 

N=<complexType mixed= ‘true’…> ∨ 

   N=<complexContent mixed= ‘true’…> ))  

        ∨  

                         ( valueType(N)=computeType(N, facets) ∧ ( 

              N=<simpleType…> ∨ N=<simpleContent…> ) ∧ 

                          |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null ))))}  

Figure 10: The function L: XPath x schema_path x XPath → Set(schema_path) for in-

tegrating data type checking 

Whenever an element contains elements and text nodes for its value, i.e. declared as 

<complexType mixed= ‘true’…> or <complexContent mixed= ‘true’…>, XML Schema does 

not impose any specific data-type for the value of the element. Therefore, the value is 

considered as character string, and there is no restricting facet either, i.e. we do not 

check the data type of values in this case.  

 
XML Schema specifies a specific data-type for the value of elements if the elements 

are of a simple type, i.e. the elements consist of a text node with or without attributes. 

The attributes are always of simple types. The types of values of elements and attrib-

utes can be either the built-in simple types of the XML Schema language or user-

defined simple types. New simple types are derived from existing simple types, which 

are called the base types of the derived types, by restricting the range of base types. 

XML Schema applies one or more facets to restrict the legal values of base types. 

Thus, a new simple type is a particular combination of a base type and the facets. Base 

types can be built-in or derived, and thus in order to know what a new simple type is, 



one must find the source of the derivation, i.e. the built-in simple type, and all the 

restrictions imposed by the sequence of the derivations. The function computeType(N, 

facets) computes the type of value of an element or an attribute, if the element or the 

attribute is not of a built-in simple type, where N is the instance text node of the node 

that declares the element or N is the succeeding node <simpleType…> of the instance 

attribute node that declares the attribute.  

 

Whenever an instance text node is the attribute node type=T of an element declaration 

node N, then T must be a built-in simple type. In this case, the value type of the ele-

ment defined in N is T without restricting facets, i.e. valueType(N)=(T, -). Since an at-

tribute is always of simple type, the attribute node can be declared with a built-in 

simple type, or with a user-defined simple type, or with an anonymously new simple 

type. Therefore, if N=<attribute type=T…> and built-in(T), i.e. T is a built-in simple type, 

the value type of the attribute is the built-in simple type without restricting facets, i.e. 

valueType(N)= (T, -). If N=<attribute type=T…> and ¬built-in(T), then T is defined by a 

node N1=<simpleType name=T…> that is a succeeding node of N, and the value type of 

the attribute defined in N is computed by the function computeType(N1, facets). If an 

instance attribute node N does not contain a named type, i.e. attributeNode(N, 

type=T)=⊥, the instance attribute node has an anonymous type that is defined in a child 

node N1=<simpleType…> of N, the value type of the attribute declared in the node N is 

computed by the function computeType(N1, facets).  

 

Algorithm 1 computeType(N, facets) describes how to retrieve the type of values of 

attributes and elements according to the syntax for simpleTypeD and simpleContentD 

(see Section 2.2). XML Schema identifies 12 restricting facets, and thus the argument 

facets is an array variable containing 12 string data. We use the name of facets speci-

fied in [32] as the index of the array to which the value of the facet is bound.  

 

Algorithm 1: computeType(N, facets): 

 

N1∈child(N); 

If (N1=<extension…>) { 

base=attribute(N1, ‘base’); 

   if (built-in(base)) return (base, facets); 

else { 

N2∈succeeding(N1), where N2=<simpleType…>; 

return computeType(N2, facets); 

} 

} 

If (N1=<restriction…>) {  

base=attribute(N1, ‘base’); 

if (∃s∈succeding(N1): s=<simpleType…>) (base, facets)=computeType(s, facets); 

∀s∈succeding(N1) { 

if (s=<length value=V />)  facets[length]=V;  

if (s=<minLength value=V />) facets[minLength]=V;  

if (s=<maxLength value=V />) facets[maxLength]=V;  

if (s=<pattern value=V />) facets[pattern]=V;  

if (s=<enumeration value=V />) facets[enumeration]=V;  

if (s=<whiteSpace value=V />) facets[whiteSpace]=V;  

if (s=<maxInclusive value=V />) facets[maxInclusive]=V;  

if (s=<maxExclusive value=V />) facets[maxExclusive]=V;  

if (s=<minInclusive value=V />) facets[minInclusive]=V;  

if (s=<minExclusive value=V />) facets[minExclusive]=V;  

if (s=<totalDigits value=V />) facets[totalDigits]=V; 

if (s=<fractionDigits value=V />) facets[fractionDigits=V;  

           } 

          return (base, facets); 

      } 
 



In Algorithm 1, node N1=<extension base=QName> is a child node of <simpleContent…>; 

node N2=<restriction base=QName> is a child node of <simpleType…>. Both nodes indi-

cate the base type of the derivation, which may be either a built-in or a derived simple 

type. If the base type is not a built-in simple type, there is a node <simpleType 

name=QName> with the same QName, which defines the base type of the derived type, 

and which is a succeeding node of N1 or N2. Thus, a new simple type might be derived 

recursively from a sequence of existing simple types, until the base is a built-in simple 

type. The facets that restrict the range of value of the base type are identified by sev-

eral child nodes of <restriction…>. Furthermore, the restrictions imposed by a derived 

type override the restrictions from its base type. If <restriction…> does not have a child 

<simpleType…>, the attribute base of the node <restriction…> must be a built-in simple 

type. This means that we find the source of derivation and all restricting facets, i.e. we 

compute the type of value of the element or the attribute. 

4.6 Integrating occurrence constraints checking 

XML Schema specifies some constraints that control the occurrence of elements and 

attributes and their values. When an element is declared with maxOccurs=0 (and mi-

nOccurs=0, because it is an error if minOccurs≠0) or a model group of the element is 

declared with maxOccurs=0, or when an attribute is declared with use=‘prohibited’, the 

element and the attribute must not appear in any instance document. When an element 

or an attribute is declared to have a fixed value, e.g. fixed=‘100’, the value of the ele-

ment or the attribute in all instance documents must be 100.  

 

In order to integrate the occurrence constraints checking, we modify the data model of 

XML Schema, specifically, the functions iChild(x) and iAttribute(x) in Figure 3, as fol-

lows: 

 

• iChild(N) = { y+(N1) | y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧ isiElement(N1) ∧ 

        ∀i∈{2, 3, …, |y|}:  ( 

       ( ( y[i]=<group maxOccurs=D…> ∨ 

                            y[i]=<sequence maxOccurs=D…> ∨  

                            y[i]=<choice maxOccurs=D…> ∨ 

                            y[i]=<all maxOccurs=D….> ) ∧  

  D>0 )  

                     ∨ 

                     ( y[i]≠<group…> ∧ y[i]≠<sequence…> ∧  

  y[i]≠<choice…> ∧ y[i]≠<all…> )) ∧ 

     ( ( y[|y|]=<element ref=E maxOccurs=D…> ∧ D>0 ) ∨ 

   y[|y|]≠<element ref=E…> ) ∧ 

        attribute(N1, maxOccurs)>0 }   

                   

• iAttribute(N) = { y+(N1) | y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧ 

isiAttribute(N1) ∧ ( 

( y[|y|]=<attribute ref=A> ∧ attribute(y[|y|], ‘use’)≠‘prohibited’ ) ∨ 

( y[|y|]≠<attribute ref=A> ∧ attribute(N1, ‘use’)≠‘prohibited’ ))} 

Figure 11: The function L: XPath x schema_path x XPath → Set(schema_path) for in-

tegrating occurrence constraints checking 

 

The function iChild(N) first computes a set S of node sequences using the auxiliary 

function iChild-helper(N). Each sequence y∈S consists of N and the nodes visited after N 

but before an instance child node of N. If the succeeding nodes N1 of y[|y|] are not the 

instance element nodes, then no node sequence is computed from y. In the case of a 

succeeding node N1 of y[|y|] being an instance element node, iChild(N) returns the node 

sequence y+(N1), only when each model group of N1 is declared with maxOccurs>0, i.e. 

if u is a node in y, then u is either a node of a model group with maxOccurs>0, or is a 

node rather than the node of a model group. If y[|y|]=<element ref=E maxOccurs=D>, then 



N1 is an instance child node of N only when D>0. Note that we do not check the attrib-

ute maxOccurs of the instance parent node y[1] of N1, because we assume that the ele-

ments defined in instance ancestor nodes of N1 are allowed to appear in instance XML 

documents. 

 

The constraints on fixed values are closely related with type-checking, and thus the 

function L(self::node()=C, p, self::node()=C) is modified as follows: 

 

• L(self::node()=C, p, self::node()=C) =  { p1 | ( 

( p1∈L(child::text()/self::node()=C, p, child::text()/self::node()=C) ∧  

  ¬isiText(N) ∧ ¬isiAttribute(N) ∧ N=S(1)[|S(1)|] ∧ S=p[|p|].S ) 

∨ 

( p1=(<self::node()=C>) ∧ (isiText(N) ∨ isiAttribute(N)) ∧  

  N=S(1)[|S(1)|] ∧ S=p[|p|].S ∧ ( 

( C=V ∧ N=<attribute fixed=V…> )   

∨           

                  ( C=V ∧ N1=<element fixed=V…> ∧ N1=s[1]  ∧ s∈p[|p|].S ∧ ( 

          N=@<type=T> ∨  

N=<simpleType…> ∨  

N=<simpleContent…> ∨  

             N=<complexType mixed= ‘true’…> ∨  

     N=<complexContent mixed= ‘true’…> )))) 

∨ 

( p1=(<self::node()=C>) ∧ (isiText(N) ∨ isiAttribute(N)) ∧  

     N=S(1)[|S(1)|] ∧ S=p[|p|].S ∧ typeChecking(valueType(N), C) ∧ ( 

( valueType(N)=(T, -) ∧ N=@<type=T> ∧  

  attributeNode(N1, fixed=V)=⊥ ∧ N1=s[1] ∧ s∈p[|p|].S )  

∨  

( valueType(N)=(T, -) ∧ N=<attribute type=T…> ∧ built-in(T) ∧  

  attributeNode(N, fixed=V)=⊥ )  

   ∨ 

( valueType(N)=computeType(N1, facets) ∧  

  attributeNode(N, fixed=V)=⊥ ∧ ( 

      ( N=<attribute type=T…> ∧ ¬built-in(T) ∧ N1∈succeeding(N) ∧  

            N1=<simpleType name=T...> )  

        ∨ 

        ( N=<attribute…> ∧ attributeNode(N, type=T)=⊥ ∧  

   N1=child(N) ∧ N1=<simpleType…> )) ∧ 

                    |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null )  

∨  

( valueType(N)=(‘string’, -) ∧ attributeNode(N1, fixed=V)=⊥ ∧ 

       N1=s[1] ∧ s∈p[|p|].S   ∧ ( 

      N=<complexType mixed= ‘true’…>  ∨   

        N=<complexContent mixed= ‘true’…> ))  

∨                          

           ( valueType(N)=computeType(N, facets) ∧  

  attributeNode(N1, fixed=V)=⊥ ∧ N1=s[1] ∧ s∈p[|p|].S ∧ ( 

      N=<simpleType…> ∨ N=<simplexContent…> ) ∧ 

                     |facets|=12 ∧ facets[1]=null ∧ … ∧ facets[12]=null ))))} 

Figure 12: The function L: XPath x schema_path x XPath → Set(schema_path) for in-

tegrating fixed value checking 

       

In L(self::node()=C, p, self::node()=C), if N=<attribute…> is the node selected by 

self::node(), N can carry the attribute fixed. If N contains the attribute fixed, i.e. 

N=<attribute fixed=V…>, the schema paths of the predicate self::node()=C is 

{(<self::node()=C>)} if and only if C=V; the schema paths of the predicate self::node()=C 

is computed to the empty set if C≠V, and thus the corresponding main paths are com-

puted to the empty set. If N  does not contain the attribute fixed, i.e. attributeNode(N, 



fixed=V)=⊥, C must conform to the type of value of the attribute defined in N, in order 

to compute {(<self::node()=C>)} from the predicate self::node()=C; if C does not conform 

to the type constraint, then L(self::node()=C, p, self::node()=C)=∅. When the node se-

lected by self::node() is an attribute node @<type=T> or a node <simpleType…> or a 

node <simpleContent…> or a node <complexType…> or a node <complexContent…>, these 

nodes do not contain the attribute fixed, which can be contained by the instance parent 

node of these nodes, i.e. N1=<element…>, which is the first node in the corresponding 

node sequences. 

4.7 Complexity analysis 

We first analyze the complexity of our approach in the worst case. Different from 

instance XML documents the topology of which is a tree, an XML Schema definition 

is a directed graph. In the directed graph leading to the worst-case complexity, each 

node has directed edges to all nodes. Therefore, we assume that in an XML Schema 

definition S in the worst case, each node in S is an instance node and each node is a 

succeeding node of all the nodes. In an XPath query Q in the worst case, each location 

step in Q selects all the instance nodes in S.  

 

Let a be the number of location steps in the query Q. Let N be the number of nodes 

and i be the number of the instance nodes in a given XML Schema definition S, where 

i≤N. In the worst case, from each schema path p, the length of which is s, of the result 

of the previous location step, firstly N nodes, which are directly reachable from the 

context node, are visited and selected as the resultant nodes, and thus N new schema 

path records are created and N schema paths with the length s+1 are computed. From 

each of N visited nodes, N succeeding nodes are visited and selected as the resultant 

nodes, one of which is revisited. No new schema paths are computed from the revis-

ited nodes, and they do not contribute to the further computation of schema paths 

either, but the revisited nodes indicate the occurrence of a loop. Therefore, N-1 new 

schema path records are created, one existing schema path record is modified by inte-

grating the new loop schema path, and N-1 new schema paths with length of s+2 are 

computed. Therefore, there are N+N∗N nodes visited and N+N∗(N-1) schema paths with 

length from s+1 to s+2 computed so far. From each of N∗(N-1) nodes, N succeeding 

nodes are visited and selected as the resultant nodes, two of which are revisited. 

Therefore, N-2 new schema path records are created, two existing schema path record 

are modified by integrating the new loop schema path, and N-2 new schema paths with 

length s+3 are computed. N+N∗N+N∗(N-1)∗N nodes are visited and N+N∗(N-1)+N∗(N-

1)∗(N-2) schema paths with length from s+1 to s+3 are computed so far. After a loca-

tion step is evaluated, from each schema path p of the result of the previous location 

step, N+N∗N+N∗(N-1)∗N+…+N∗(N-1)∗(N-2)∗…∗2∗N = N∗∑k=0N-1N!/(N-k)! nodes are visited 

and N+N∗(N-1)+N∗(N-1)∗(N-2)+…+N∗(N-1)∗(N-2)∗…∗2∗1 = ∑k=1N N!/(N-k)! schema paths 

are computed with length from s+1 to s+N. 

 

Let X = N∗∑k=0N-1N!/(N-k)! and P = ∑k=1NN!/(N-k)!. In the worst case, having evaluated the 

first location step, X nodes are visited and P schema paths are created with length from 

1 to N; having evaluated the first two location steps, X + P∗X nodes are visited and P2 

schema paths are created with length from 2 to N+N; having evaluated Q, X+P∗X+ 

P2∗X+…+Pa-1∗X = X∗∑j=0a-1Pj nodes are visited and Pa schema paths are created with 

length from a to a∗N. Since Σk=1N(N!/(N-k)!) < N!∗3 and Σk=0N-1(N!/(N-k)!) < N!∗2, thus 

X∗∑j=0a-1Pj = N∗∑k=0N-1N!/(N-k)!∗∑j=0a-1(∑k=1NN!/(N-k)!)j < N∗N!∗2∗∑j=0a-1(N!∗3)j < 

N∗N!∗2∗a∗(N!∗3)a-1. Therefore, the XPath-XSchema evaluate visits at most 

O(N∗N!∗a∗(N!∗3)a-1) nodes, and creates at most O((N!∗3)a) different schema paths, each 

of which contains at most O(a∗N) pointers, and thus O(N!∗3)a) schema paths contains at 

most O(a∗N∗(N!∗3)a) pointers to at most O(N∗N!∗a∗(N!∗3)a-1) schema path records. 

 

Therefore, the worst case complexity of our approach in terms of runtime and space is 

O(a∗N∗(N!∗3)a). 

 



The XML Schema definitions of the worst case, where each node has all the nodes as 

succeeding nodes and each node is an instance node, are rare. A query that selects all 

the nodes of a given XML instance document is /descendant-or-self::node(). Other 

queries with multiple location steps each of which selects up to all nodes are typically 

not used. Therefore, it makes sense to investigate the complexity of our approach in 

typical cases. 

 

According to real-world schemas and queries, we assume that the typical cases are 

characterized as follows: each node in an XML Schema definition S has only a small 

number of succeeding nodes compared with the number N of nodes in S; for each 

location step of Q, the number of nodes visited is in average less than a constant C, 

and thus less than C schema paths are created for each location step. Therefore, after Q 

is evaluated for the typical case, a∗C nodes are visited and C schema paths are created, 

the length of each of which is at most a∗N. 

 

Therefore, the complexity of runtime and space of our approach is O(a∗N∗C) for the 

typical cases. When the number of the nodes visited is in average less then N for each 

location step and this is quite typical based on real-word schemas and queries, the 

complexity of our approach in terms of runtime and space is O(a∗N∗N) for the typical 

case. 

5  Satisfiability Tester 

Definition 10 (Satisfiability of XPath queries): A given XPath query Q is satisfiable 

according to a given XML Schema definition XSD, if there exists an XML document 

D, which is valid according to XSD, and the evaluation of Q on D returns a non-empty 

result. Otherwise, Q is unsatisfiable according to XSD. 

 

Proposition 1 (Unsatisfiable XPath queries): If the evaluation of an XPath query Q 

on a given XML Schema definition XSD by the XPath-XSchema evaluator generates 

an empty set of schema paths, then Q is unsatisfiable according to XSD.  
 

Proof. The XPath-XSchema evaluator is constructed in such a way that the XPath-
XSchema evaluator returns an empty set of schema paths, if the constraints given in Q 
and the constraints given in XSD exclude the constraints of the other, i.e. the 
navigation paths described by Q cannot be mapped to the corresponding paths in XSD, 
or the values of attributes or elements given in Q do not conform to the types of the 
values of elements or attributes specified in XSD, or the attributes and elements are 
prohibited by XSD to appear in instance XML documents. Thus, there does not exist a 
valid XML document according to XSD, where the application of Q returns a non-
empty result.   
If an XPath query is computed to a non-empty set of schema paths by our XPath-
XSchema evaluator on an XML Schema definition, the XPath query is only maybe 
satisfiable, since the satisfiability test of XPath queries formulated in the supported 
subset of XPath is undecidable [2] and our satisfiability tester is incomplete. Our ap-
proach checks whether or not each location step in an XPath query Q conforms to the 
constraints given in the XML Schema definition, but our approach does not check 
whether or not two or more location steps in Q contradict each other. For example, the 
query Q1=a[b/c][b/d] and Q2=a[not(b)]/∗ are tested as satisfiable queries by our approach. 
However, Q1 is unsatisfiable if the schema specifies that b can occur only one time 
and c and d cannot appear in any valid XML document simultaneously; the query Q2 
is unsatisfiable if the schema specifies that b is the only children of a.   

6   Performance Analysis 

We have implemented a prototype of our approach in order to verify the correctness 

of our approach and to demonstrate the optimization potential for avoiding the evalua-

tion of unsatisfiable XPath queries. The performance analysis focuses on the detection 



of unsatisfiable XPath queries by our approach and the evaluation of these unsatisfi-

able queries by common XPath evaluators. We also study the overhead of evaluating 

satisfiable XPath queries by our approach, where we compare the time of evaluating 

the satisfiable queries by our approach with the time of evaluating unsatisfiable que-

ries by our approach and with the time of evaluating these satisfiable queries by com-

mon XPath evaluators, in order to prove the usability of our approach. 

6.1 Test system and data 

The test system for all experiments is an Intel Pentium 4 processor 2.4 Gigahertz with 

512 Megabytes RAM, Windows XP as operating system and Java VM build version 

1.4.2. We use the XQuery evaluators Saxon version 8.0 (see [16]) and Qizx version 

0.4pl (see [7]) in order to evaluate the XPath queries. We use the XPathMark bench-

mark (see [8]) as the source of our experimental data, and generate data from 0.116 

Megabytes to 11.597 Megabytes by using the data generator of [8]. An XML Schema 

definition benchmark.xsd (see Appendix A) is manually adapted according to the DTD 

benchmark.dtd of the XPathMark benchmark (see [8]) and the instance documents in 

order to integrate as many constructs of XML Schema as possible and to specify more 

specific data types for values of elements and attributes, which are all declared as 

#PCDATA in benchmark.dtd. We design two groups of unsatisfiable queries and two 

groups of satisfiable queries. The first group of unsatisfiable queries Q1-Q11 (see 

Table 1) is modified from some of the XPathMark benchmark queries (see [8]) to 

contain erroneous semantic and structure; the second group of unsatisfiable queries 

Q12-Q26 (see Table 3) does not conform to value-types or occurrence constraints. We 

correct the errors of the semantic and structure in the first group of unsatisfiable que-

ries Q1-Q11 and get a group of satisfiable queries Q1’-Q11’ (see Table 2); we modify 

the second group of unsatisfiable queries Q12-Q26 and obtain another group of satisfi-

able queries Q12’-Q26’, which conform to the value-types and occurrence constraints. 

Furthermore, the queries in these groups are also designed to contain as many con-

structs of the XPath language as possible in order to test how the different constructs 

of the XPath language influence the processing performance. We present the average 

results of ten executions of these queries. 



 

Table 1: Queries with incorrect semantic or structure 

Queries Reasons for Unsatisfiability 

Q1 /site/closed_auctions/closed_auction/annotation/ 

description/parlist/text 

parlist has no child text. 

Q2 /site/regions/∗/item[parent::america] item has no parent america. 

Q3 /site/open_auctions/open_auction[bidder//title] bidder has no descendant title. 

Q4 /site/people/person[age or gender] person has neither child age nor 

child gender. 

Q5 //person[age or gender] person has neither child age nor 

child gender. 

Q6 //keyword[italic][bold] keyword has no child italic. 

Q7 /descendant-or-self::persons persons does not exist. 

Q8 //open_auction[bidder//title] bidder has no descendant title. 

Q9 //∗/person[age or gender] person has neither child age nor 

child gender. 

Q10 //keyword/ancestor-or-self::mail[@title] mail has no attribute title. 

Q11 //keyword/ancestor::listitem/type Listitem has no child type. 

 

Table 2: Queries with correct semantic and structure 

Satisfiable Queries 

Q1’ /site/closed_auctions/closed_auction/annotation/descrition/parlist 

Q2’ /site/regions/∗/item[parent::namerica] 

Q3’ /site/open_auctions/open_auction[bidder] 

Q4’ /site/people/person 

Q5’ //person 

Q6’ //keyword[bold] 

Q7’ /descendant-or-self::person 

Q8’ //open_auction[bidder] 

Q9’ //∗/person 

Q10’ //keyword/ancestor-or-self::mail 

Q11’ //keyword/ancestor::listitem 

 

Table 3: Queries not conforming to data-types or occurrence constraints 

Queries Reasons for Unsatisfiability 

Q12 /site/people/person/race race is a prohibited element, i.e. 

maxOccurs= ‘0’. 

Q13 //person/race race is a prohibited element 

Q14 /site[@owner= 'A'] owner is a prohibited attribute, i.e. 

use= ‘prohibited’. 

Q15 //site[@owner='A'] owner is a prohibited attribute 

Q16 /site/people/person/watches/watch/ 

       @expression 

expression is a prohibited attribute. 

Q17 //watch/@expression expression is a prohibited attribute. 

Q18 //∗/@expression expression is a prohibited attribute. 

Q19 /site/people/person 

    [creditcard= '1234 4567 890a 1234'] 

creditcard is of pattern  

\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}. 

Q20 //creditcard 

     [self::node()='1234 7890 1234'] 

creditcard is of pattern  

\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}. 

Q21 //∗[creditcard= '1234 456 7890 1234'] creditcard is of pattern  

\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}. 

Q22 //happiness[self::node()= 11] happiness has maxInclusive= ‘10’. 

Q23 /site/people/person/profile[gender='M'] gender has enumeration male, female. 

Q24 //gender[self::node()='f'] gender has enumeration male, female. 



Q25 /site/catgraph/edge[self::node()='edge'] edge has no value. 

Q26 //edge[self::node=123.45] edge has no value. 

 

Table 4: Queries conforming to data-types and occurrence constraints 

Satisfiable Queries 

Q12’ /site/people/person 

Q13’ //person 

Q14’ /site 

Q15’ //site 

Q16’ /site/people/person/watches/watch 

Q17’ //watch 

Q18’ //∗ 

Q19’ /site/people/person[creditcard= '1234 4567 8900 1234'] 

Q20’ //creditcard[self::node()='1234 7890 1234 7890'] 

Q21’ //∗[creditcard= '1234 4567 7890 1234'] 

Q22’ //happiness[self::node()= 9] 

Q23’ /site/people/person/profile[gender='male'] 

Q24’ //gender[self::node()='female'] 

Q25’ /site/catgraph/edge 

Q26’ //edge 

6.2 Filtering queries with incorrect semantic or structure 

Figure 13 presents the time of evaluating the queries Q1-Q11 on benchmark.xsd by our 

XPath-XSchema evaluator, when returning an empty set of schema paths. Our evalua-

tor can evaluate XPath queries Q1-Q4 without recursive axes very fast, less than 0.02 

seconds; evaluating queries Q5-Q7 with one recursive location step is on average 2.6 

slower than evaluating queries Q1-Q4 without recursive location steps; evaluating 

queries with two descendant recursive location steps (Q8) doubles the time of evaluat-

ing queries with one descendant axis (Q5-Q7); evaluating queries (Q10 and Q11) with 

one descendant location step and one ancestor location step is 1.4 times slower than 

evaluating queries (Q8) with two descendant location steps; evaluating Q9, which has a 

location step //∗ that selects all the nodes in an XML document, is slowest, i.e. three 

times slower than Q5-Q7 with one recursive location step, which consists of a label 

nodetest. Figure 14 and Figure 15 present the time of evaluating these queries using 

the Saxon and the Qizx evaluator respectively when an empty result is returned. 

Figure 16 and Figure 17 present the speed-up factors achieved by our approach over 

the Saxon evaluator and the Qizx evaluator respectively when evaluating Q1-Q11. The 

experimental results show that our approach can check the satisfiability of XPath 

queries effectively. Our approach is 488 times (and 128 times respectively) faster on 

average when evaluating the queries without recursive axis, and 129 times (and 32 

times respectively) faster on average when evaluating the queries with recursive axes 

at 12 Megabytes in comparison with the evaluation of the unsatisfiable queries when 

using the Saxon evaluator (and the Qizx evaluator respectively). 

6.3 Filtering queries not conforming to data-types or occurrence constraints 

Figure 18 presents the time of evaluating the XPath queries Q12-Q26 on benchmark.xsd 

by our XPath-XSchema evaluator, when it returns an empty set of schema paths. 

Figure 18 shows similar results for the influence of different XPath constructs on the 

processing performance. Figure 19 and Figure 20 present the time of evaluating these 

queries using the Saxon and the Qizx evaluator respectively, when an empty result is 

returned. Figure 21 and Figure 22 present the speed-up factors achieved by our ap-

proach over the Saxon evaluator and the Qizx evaluator respectively when evaluating 



these queries. Likewise, the experimental results show that our approach can check the 

satisfiability of XPath queries effectively. Our approach is 543 times (and 167 times 

respectively) faster on average when evaluating the queries without recursive axis, and 

91 times (and 36 times respectively) faster on average when evaluating the queries 

with recursive axes than Saxon (and Qizx respectively) at 12 Megabytes in compari-

son with the evaluation of the unsatisfiable queries. 

6.4 Measuring the overhead of evaluating satisfiable queries 

Figure 23 presents the time of evaluating the satisfiable XPath queries Q1’-Q11’ on 

benchmark.xsd by our XPath-XSchema evaluator, when it returns an un-empty set of 

schema paths, and the time of evaluating the unsatisfiable XPath queries Q1-Q11 by 

our evaluator for ease of comparison. Figure 24 presents the time of evaluating the 

satisfiable XPath queries Q12’-Q26’ on benchmark.xsd by our XPath-XSchema evalua-

tor, when it returns an un-empty set of schema paths, and the time of evaluating the 

unsatisfiable XPath queries Q12-Q26 by our evaluator. Figure 23 and Figure 24 show 

that the overhead of evaluating satisfiable XPath queries is very close to the overhead 

of evaluating unsatisfiable XPath queries. Figure 25 and Figure 26 present the time of 

evaluating Q1’-Q11’ on the XML data of different sizes by the Saxon and Qizx evalua-

tor; Figure 27 and Figure 28 present the ratio of the time by our approach over the 

time used by Saxon and Qizx respectively for the evaluation of Q1’-Q11’. The results 

show that the ratio of the time of evaluating Q1’-Q11’ by our approach over the time 

used by Saxon is 1% (and over the time used by Qizx is 5% respectively) in the worst 

case when the size of data is 12 Megabytes. However, when the size of XML docu-

ments is very small (<100 Kilobytes), the overhead of evaluating satisfiable XPath 

queries by our approach is quite high compared to the time of the evaluation by XPath 

evaluators. When the size of XML data is 100 Kilobytes, the ratio of the time of 

evaluating the XPath queries Q1’-Q8’ with at most one recursive axis (excluding //∗) by 

our approach over Saxon (and Qizx) is 25% (and 200% respectively); the ratio of the 

time of evaluating XPath queries Q9’-Q11’ with two recursive axes (or with one //∗ 

location step, which selects all the nodes of XML documents) by our approach over 

the time by Saxon (and by Qizx respectively) is about 50% (and 400% respectively); 

In the worst case, the ratio of the time of evaluating Q1’-Q11’ by our approach over the 

time used by Saxon is 10% when the size of XML data is 1 Megabytes, 5% when the 

size of data is 4 Megabytes, and 2.5% when the size of data is 6 Megabytes. In the 

worst case, the ratio of the time of evaluating Q1’-Q11’ by our approach over the time 

used by Qizx is 75% when the size of XML data is 1 Megabytes, 23% when the size 

of data is 2.3 Megabytes, 10% when the size of data is 6.2 Megabytes. Although the 

ratio of the time of evaluating satisfiable XPath queries by our approach over common 

XPath evaluators is high for small instance XML documents, the absolute time used 

by our approach is very small, i.e. 0.12 seconds in the worst case when evaluating Q1’-

Q11’. 
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Figure 13: Filtering Q1-Q11 by our approach 

 

Figure 14: Evaluating Q1-Q11 using the Saxon evaluator 

 

Figure 15: Evaluating Q1-Q11 using the Qizx evaluator 



 

Figure 16: Speedup by our approach over Saxon when evaluating Q1-Q11 

 

Figure 17: Speedup by our approach over Qizx when evaluating Q1-Q11 
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Figure 18: Filtering Q12-Q26 by our approach 

 

Figure 19: Evaluating Q12-Q26 using the Saxon evaluator 

 

Figure 20: Evaluating Q12-Q26 using the Qizx evaluator 



 

Figure 21: Speedup by our approach over Saxon when evaluating Q12-Q26 

 

Figure 22: Speedup by our approach over Qizx when evaluating Q12-Q26 
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Figure 23: Time of evaluating unsatisfiable queries (Q1-Q11) and satisfiable 

queries (Q1’-Q11’) by our evaluator 
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Figure 24: Time of evaluating unsatisfiable queries (Q12-Q26) and satisfiable 

queries (Q12’-Q26’) by our evaluator 



 

Figure 25: Evaluation of queries Q1’-Q11’ using Saxon 

 

Figure 26: Evaluation of queries Q1’-Q11’ using Qizx 



 

Figure 27: Ratio of the time used by our approach over by Saxon when evalu-

ating Q1’-Q11’. 

 

Figure 28: Ratio of the time used by our approach over by Qizx when evaluating 

Q1’-Q11’ 

7  Further Related Work  

Many research efforts are dedicated to the satisfiability problem of XPath queries. [2] 

theoretically studies the complexity problem of XPath satisfiability in the presence of 

DTDs, and shows that the complexity of XPath satisfiability depends on the consid-

ered subsets of XPath queries and DTDs. We present a practical algorithm for testing 

the satisfiability of XPath queries. [14] investigates the problem of XPath satisfiability 

in the absence of schemas. [18] examines the test of satisfiability of tree pattern que-

ries (i.e. reverse axes are not considered) with respect to non-recursive schemas. [17] 

suggests an algorithm to test the satisfiability of XPath queries, but allows only non-

recursive DTDs and does not support all XPath axes. We support recursive schemas 

and all XPath axes. [12] filters the unsatisfiable XPath queries by a set of simplifica-

tion rules. [9] extends the applications of satisfiability test to optimizations for XML 



query reformulation and shows how to reduce the containment and intersection test of 

XPath expressions to the satisfiability test.  

 

There has been work on physical optimization of XPath expressions, i.e. efficient 

algorithms for XPath evaluation, e.g. the XPath evaluator proposed in [13], which 

considers bottom-up processing of XPath expressions, indexing techniques (see [23] 

and [25]) and structural join algorithms (see [4] and [15]). Many research efforts focus 

on the minimization of XPath expressions (see [1], [22] and [26]) by eliminating re-

dundant steps since the size of XPath expressions significantly impacts the processing 

of queries. The study on the minimality of XPath closely relates to the issues of the 

equivalence and containment with respect to two XPath queries (see [20] and [27]). 

[21], [3] and [5] study logical rewriting and optimization of XPath based on the prop-

erties of XPath expressions: [21] eliminates reverse axes for efficient evaluation on 

streaming data, [3] identifies useful rewriting rules and [5] minimizes wildcard steps 

to speedup XPath evaluation.  

8   Summary and Conclusions 

We have proposed a data model for the XML Schema language, which identifies the 

navigation paths of XPath queries on XML Schema definitions. Based on the data 

model, we have developed an XPath-XSchema evaluator, which evaluates XPath 

queries on an XML Schema definition in order to check whether or not the queries 

conform to the constraints imposed by the schema definition, where we also consider 

the powerful data typing capabilities of XML Schema. When an XPath query does not 

conform to the constraints in a given schema definition, our evaluator computes an 

empty set of schema paths, i.e. the XPath query is unsatisfiable. Otherwise, the XPath 

query is maybe satisfiable. 

 

The experimental results of our prototype show that our approach has very low 

overhead, that our approach does not significantly increase the total processing time of 

satisfiable queries when the input XML documents are not very small, and that 

application of our approach can significantly optimize the evaluation of XPath queries 

by filtering unsatisfiable XPath queries. A speed-up factor up to several magnitudes is 

possible. 

 

Future work includes filtering the XPath queries with location steps that contradict 

each other, and transferring our results for XPath to XQuery and XSLT.  
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Appendix A: benchmark.xsd 

In this section, we present the XML Schema definition benchmark.xsd, which we use 

for the performance analysis. This schema is manually adapted according to the DTD 

benchmark.dtd of the XPathMark benchmark [8] and the instance documents generated 

using the data generator of [8] in order to integrate as many constructs of XML 

Schema as possible and specify more specific data types for values of elements and 

attributes, which are only declared as #PCDATA in benchmark.dtd. 
 

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'> 
  
 <xs:annotation> 
  -- This schema was manually adapted according to -- 
  -- benchmark.dtd and the instance documents in order to  -- 
  -- integrate as many constructs of XML Schema as possible and  -- 
  -- specify more specific data types for values of elements and attributes, -- 
  -- which are only declared as #PCDATA in benchmark.dtd -- 
 </xs:annotation> 
 
 <xs:element name='site' type='siteType'/> 
  
 <xs:complexType name='siteType'> 
   <xs:sequence> 
     <xs:element name='regions' type='regionsType'/> 
     <xs:element name='categories' type='categoriesType'/> 
     <xs:element name='catgraph' type='catgraphType'/> 
     <xs:element name='people' type='peopleType'/> 
     <xs:element name='open_auctions' type='open_auctionsType'/> 
     <xs:element name='closed_auctions' type='closed_auctionsType'/> 
   </xs:sequence> 
   <xs:attribute name='owner' type='xs:string' use='prohibited'/> 
 </xs:complexType> 
   
 <xs:complexType name='regionsType'> 
    <xs:sequence> 
      <xs:element name='africa' type='regionType'/> 
      <xs:element name='asia' type='regionType'/> 
      <xs:element name='australia' type='regionType'/> 
      <xs:element name='europe' type='regionType'/> 
      <xs:element name='namerica' type='regionType'/> 
      <xs:element name='samerica' type='regionType'/> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='categoriesType'> 
    <xs:sequence> 
      <xs:element name='category' maxOccurs='unbounded'> 
        <xs:complexType> 
   <xs:sequence> 
     <xs:element name='name' type='xs:string'/> 
     <xs:element name='description' type='descriptionType'/> 
   </xs:sequence> 
   <xs:attribute name='id' use='required' type='xs:ID'/> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='catgraphType'> 
    <xs:sequence> 
      <xs:element name='edge' type='edgeType' minOccurs='0'  
                   maxOccurs='unbounded'/> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='peopleType'> 
     <xs:sequence> 
       <xs:element name='person' type='personType' minOccurs='0'  
                  maxOccurs='unbounded'/> 
     </xs:sequence> 
  </xs:complexType> 



   
  <xs:complexType name='open_auctionsType'> 
     <xs:sequence> 
       <xs:element name='open_auction' type='open_auctionType'  
                  minOccurs='0' maxOccurs='unbounded'/> 
     </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='closed_auctionsType'> 
     <xs:sequence> 
       <xs:element name='closed_auction' type='closed_auctionType'  
                 minOccurs='0' maxOccurs='unbounded'/> 
     </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='regionType'> 
    <xs:sequence> 
      <xs:element name='item' type='itemType' minOccurs='0'  
                maxOccurs='unbounded'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='edgeType'> 
   <xs:attribute name='from' use='required' type='xs:IDREF'/> 
   <xs:attribute name='to' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='personType'> 
    <xs:complexContent> 
      <xs:extension base='personType0'> 
        <xs:sequence> 
          <xs:element name='profile' type='profileType' minOccurs='0'/> 
          <xs:element name='watches' type='watchesType' minOccurs='0'/> 
          <xs:element name='race' type='xs:string' minOccurs='0' maxOccurs='0'/> 
        </xs:sequence> 
     </xs:extension> 
    </xs:complexContent>  
  </xs:complexType> 
   
  <xs:complexType name='personType0'> 
    <xs:sequence> 
      <xs:element name='name' type='xs:string'/> 
      <xs:element name='emailaddress' type='xs:string'/> 
      <xs:element name='phone' type='xs:string' minOccurs='0'/> 
      <xs:element name='address' type='addressType' minOccurs='0'/> 
      <xs:element name='homepage' type='xs:string' minOccurs='0'/> 
      <xs:element name='creditcard' type='creditcardType' minOccurs='0'/> 
    </xs:sequence> 
   <xs:attribute name='id' use='required' type='xs:ID'/> 
  </xs:complexType> 
  
  <xs:complexType name='open_auctionType'> 
    <xs:sequence> 
      <xs:element name='initial' type='xs:float'/> 
      <xs:element name='reserve' type='reserveType' minOccurs='0'/> 
      <xs:element name='bidder' type='bidderType' minOccurs='0'  
                   maxOccurs='unbounded'/> 
      <xs:element name='current' type='xs:float'/> 
      <xs:element name='privacy' type='privacyType' minOccurs='0'/> 
      <xs:element name='itemref' type='itemrefType'/> 
      <xs:element name='seller' type='sellerType'/> 
      <xs:element name='annotation' type='annotationType'/> 
      <xs:element name='quantity' type='quantityType'/> 
      <xs:element name='type' type='typeType'/> 
      <xs:element name='interval' type='intervalType'/> 
    </xs:sequence> 
    <xs:attribute name='id' use='required' type='xs:ID'/> 
  </xs:complexType> 
   
  <xs:complexType name='closed_auctionType'> 
    <xs:sequence> 
      <xs:element name='seller' type='sellerType'/> 
      <xs:element name='buyer' type='buyerType'/> 
      <xs:element name='itemref' type='itemrefType'/> 
      <xs:element name='price' type='xs:float'/> 
      <xs:element name='date' type='dateType'/> 
      <xs:element name='quantity' type='quantityType'/> 



      <xs:element name='type' type='typeType'/> 
      <xs:element name='annotation' type='annotationType' minOccurs='0'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='itemType'> 
    <xs:sequence> 
      <xs:element name='location' type='xs:string'/> 
      <xs:element name='quantity' type='quantityType'/> 
      <xs:element name='name' type='xs:string'/> 
      <xs:element name='payment' type='xs:string'/> 
      <xs:element name='description' type='descriptionType'/> 
      <xs:element name='shipping' type='xs:string'/> 
      <xs:element name='incategory' type='incategoryType' maxOccurs='unbounded'/> 
      <xs:element name='mailbox' type='mailboxType'/> 
    </xs:sequence> 
   <xs:attribute name='id' use='required' type='xs:ID'/> 
   <xs:attribute name='featured'/> 
  </xs:complexType> 
  
  <xs:complexType name='descriptionType'> 
    <xs:choice> 
      <xs:element name='text' type='textType'/> 
      <xs:element name='parlist' type='parlistType'/> 
    </xs:choice> 
  </xs:complexType> 
  
  <xs:complexType type='addressType'> 
    <xs:sequence> 
      <xs:element name='street' type='xs:string'/> 
      <xs:element name='city' type='xs:string'/> 
      <xs:element name='country' type='xs:string'/> 
      <xs:element name='province' type='xs:string' minOccurs='0'/> 
      <xs:element name='zipcode' type='xs:string'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:simpleType name='creditcardType'> 
    <xs:restriction base='xs:string'> 

      <xs:pattern value='\d{4}\s∗\d{4}\s∗\d{4}\s∗\d{4}'/> 
    </xs:restriction>   
  </xs:simpleType> 
 
  <xs:complexType name='profileType'> 
    <xs:sequence> 
      <xs:element name='interest' type='interestType' minOccurs='0'  
                 maxOccurs='unbounded'/> 
      <xs:element name='education' type='educationType' minOccurs='0'/> 
      <xs:element name='gender' type='genderType' minOccurs='0'/> 
      <xs:element name='business' type='businessType'/> 
      <xs:element name='age' type='ageType' minOccurs='0'/> 
    </xs:sequence> 
   <xs:attribute name='income' type='xs:flocat'/> 
  </xs:complexType> 
  
  <xs:complexType name='watchesType'> 
    <xs:sequence> 
      <xs:element name='watch' minOccurs='0' maxOccurs='unbounded'> 
        <xs:complexType> 
          <xs:complexContent> 
            <!-- emptyp content model --> 
            <xs:restriction base='xs:anyType'> 
              <xs:attribute name='open_auction' use='required' type='xs:IDREF'/> 
              <xs:attribute name='expression' use='prohibited' type='xs:string'/> 
            </xs:restriction> 
          </xs:complexContent>   
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='reserveType' mixed='true'> 
  </xs:complexType> 
 
  <xs:complexType name='bidderType'> 
   <xs:sequence> 
     <xs:element name='date' type='dateType'/> 



     <xs:element name='time' type='xs:time'/> 
     <xs:element name='personref' type='personrefType'/> 
     <xs:element name='increase' type='xs:float'/> 
   </xs:sequence> 
 </xs:complexType> 
 
 <xs:simpleType name='privacyType'> 
   <xs:restriction base='xs:string'> 
     <xs:enumeration value='Yes'/> 
     <xs:enumeration value='No'/> 
   </xs:restriction>   
 </xs:simpleType> 
  
  <xs:complexType name='itemrefType'> 
   <xs:attribute name='item' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='sellerType'> 
    <!-- empty content model --> 
    <xs:complexContent> 
      <xs:restriction base='xs:anyType'> 
        <xs:attribute name='person' use='required' type='xs:IDREF'/> 
      </xs:restriction> 
    </xs:complexContent>   
  </xs:complexType> 
  
  <xs:complexType name='annotationType'> 
    <xs:sequence> 
      <xs:element name='author'> 
        <!-- anonomously complex type definition --> 
        <xs:complexType> 
          <!-- empty content model --> 
          <xs:complexContent> 
            <xs:restriction base='xs:anyType'> 
       <xs:attribute name='person' use='required' type='xs:IDREF'/> 
     </xs:restriction> 
   </xs:complexContent>   
        </xs:complexType> 
      </xs:element> 
      <xs:element name='description' type='descriptionType' minOccurs='0'/> 
      <xs:element name='happiness'> 
        <xs:simpleType> 
          <xs:restriction base='happinessType1'/> 
        </xs:simpleType> 
      </xs:element>   
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:simpleType name='quantityType'> 
    <xs:restriction base='xs:int'> 
      <xs:minInclusive value='0'/> 
    </xs:restriction>   
  </xs:simpleType> 
  
  <xs:simpleType name='typeType'> 
    <xs:restriction base='xs:string'> 
      <xs:enumeration value='Regular'/> 
      <xs:enumeration value='Featured'/> 
    </xs:restriction>   
  </xs:simpleType> 
  
  <xs:complexType name='intervalType'> 
    <xs:sequence> 
      <xs:element name='start' type='dateType'/> 
      <xs:element name='end' type='dateType'/> 
    </xs:sequence> 
  </xs:complexType> 
   
  <xs:complexType name='buyerType'> 
   <xs:attribute name='person' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='incategoryType'> 
   <xs:attribute name='category' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='mailboxType'> 



    <xs:sequence> 
      <xs:element name='mail' type='mailType' minOccurs='0' maxOccurs='unbounded'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='textType' mixed='true'> 
    <xs:choice minOccurs='0' maxOccurs='unbounded'> 
     <xs:element name='bold' type='textType'/> 
     <xs:element name='keyword' type='textType'/> 
     <xs:element name='emph' type='textType'/> 
    </xs:choice> 
  </xs:complexType> 
  
  <xs:complexType name='parlistType'> 
    <xs:sequence minOccurs='0' maxOccurs='unbounded'> 
      <xs:element name='listitem' type='listitemType'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='interestType'> 
   <xs:attribute name='category' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='educationType' mixed='true'> 
  </xs:complexType> 
  
  <xs:simpleType name='genderType'> 
    <xs:restriction base='xs:string'> 
      <xs:enumeration value='male'/> 
      <xs:enumeration value='female'/> 
    </xs:restriction>    
  </xs:simpleType> 
  
  <xs:simpleType name='businessType'> 
    <xs:restriction base='xs:string'> 
      <xs:enumeration value='Yes'/> 
      <xs:enumeration vaule='No'/> 
    </xs:restriction> 
  </xs:simpleType> 
 
  <xs:simpleType name='ageType'> 
    <xs:restriction base='ageType1'> 
      <xs:maxInclusive value='99'/> 
    </xs:restriction> 
  </xs:simpleType> 
  
  <xs:simpleType name='ageType1'> 
      <xs:restriction base='xs:int'> 
        <xs:minInclusive value='18'/> 
      </xs:restriction> 
  </xs:simpleType> 
 
  <xs:complexType name='personrefType'> 
   <xs:attribute name='person' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:complexType name='authorType'> 
   <xs:attribute name='person' use='required' type='xs:IDREF'/> 
  </xs:complexType> 
  
  <xs:simpleType name='happinessType1'> 
    <xs:restriction base='happinessType2'> 
        <xs:maxInclusive value='10'/> 
    </xs:restriction>     
  </xs:simpleType> 
   
  <xs:simpleType name='happinessType2'> 
    <xs:restriction base='xs:int'> 
      <xs:maxInclusive value='100'/> 
      <xs:minInclusive value='0'/> 
    </xs:restriction> 
  </xs:simpleType> 
 
  <xs:complexType name='mailType'> 
    <xs:sequence> 
      <xs:element name='from' type='xs:string'/> 
      <xs:element name='to' type='xs:string'/> 



      <xs:element name='date' type='dateType'/> 
      <xs:element name='text' type='textType'/> 
    </xs:sequence> 
  </xs:complexType> 
  
  <xs:complexType name='listitemType'> 
    <xs:choice minOccurs='0' maxOccurs='unbounded'> 
      <xs:element name='text' type='textType'/> 
      <xs:element name='parlist' type='parlistType'/> 
    </xs:choice> 
  </xs:complexType> 
 
  <xs:simpleType name='dateType'> 
    <xs:restriction base='xs:string'> 
      <xs:pattern value="\d{2}/\d{2}/\d{4}"/> 
    </xs:restriction> 
  </xs:simpleType> 
  
<!-- never used elements 
 
  <xs:element name='amount'> 
    <xs:complexType mixed='true'> 
    </xs:complexType> 
   </xs:element> 
    
   <xs:element name='income' type='xs:float'/> 
  
 <xs:element name='status'> 
  <xs:complexType mixed='true'> 
  </xs:complexType> 
 </xs:element> 
  
-->  
  
</xs:schema> 
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