
XPath Query Simplification with regard to the Elimination of Intersect and

Except Operators

Sven Groppe

Digital Enterprise Research

Institute (DERI),

University of Innsbruck,

Institute of Computer Science,

A-6020 Innsbruck, Austria

Sven.Groppe@deri.org

Stefan Böttcher

University of Paderborn,

Faculty 5, Fürstenallee 11,

33098 Paderborn, Germany

stb@uni-paderborn.de

Jinghua Groppe

Digital Enterprise Research

Institute (DERI),

University of Innsbruck,

Institute of Computer Science,

A-6020 Innsbruck, Austria

Jinghua.Groppe@deri.org

Abstract

XPath is widely used as an XML query language

and is embedded in XQuery expressions and in XSLT

stylesheets. In this paper, we propose a rule set which

logically simplifies XPath queries by using a heuristic

method in order to improve the processing time.

Furthermore, we show how to substitute the XPath 2.0

intersect and except operators in a given XPath

query with computed filter expressions. A performance

evaluation comparing the execution times of the

original XPath queries, which contain the

intersect and except operators, and of the

queries that are the result of our simplification

approach shows that, depending on the used query

evaluator and on the original query, performance

improvements of a factor of up to 350 are possible.

1. Introduction

The XPath language ([20], [21]) is used to address

XML nodes. The XPath language is not only a stand-

alone language, but is even embedded in W3C’s

transformation language XSLT and in W3C’s query

language XQuery. Because of their complexity, XPath

queries can contain redundant constructs. Furthermore,

if the XPath evaluator does not optimize XPath queries,

the redundant constructs in the query can cause high

processing costs.

Whereas several previous contributions deal with

the complexity of XPath evaluation [9] and efficient

algorithms for XPath evaluation [8], we present a two

step approach for logically transforming XPath queries

containing the intersect or except operators.

First, we transform XPath queries which contain the

XPath 2.0 intersect and except operators into

equivalent XPath queries, which do not contain these

operators any more. Second, we apply a set of

simplification rules, which could be also applied to any

XPath expression that is not necessarily the result of an

elimination of the intersect or except operators.

Our performance evaluation shows that our approach

speeds up the execution compared to the original

query.

The intersect XPath 2.0 operator is used in the

approaches for the optimization of applying multiple

XPath queries [18]. Furthermore, the intersect

XPath 2.0 operator can be used for access control by

query modification [4], whenever the access rights of a

user are expressed by an XPath expression.

The except XPath 2.0 operator is used for query

optimization based on caching when for answering Q,

the query processor loads only all nodes matching a

given XPath query Q except those nodes, which are

already in the cache.

Furthermore, our proposed rule set for XPath

simplification can be used to check whether a query is

unsatisfiable, i.e. the query result is equal to {} for

every XML document. Given two XPath expressions

XP1 and XP2, we can logically test ‘XP1

intersect XP2 = {}’ and ‘XP1 except XP2

= {}’, which is equivalent to XP1 ⊆ XP2, by the

logical satisfiability test of the determined equivalent

XPath expression without intersect and except

operators.

In the scenarios with distributed XML data sources,

where the content C of a data source is described by an

XPath expression XC, the logical intersection test can

be used to prove that C does not contain data required

for answering a given query Q by proving that ‘XC

intersect Q = {}’. If we can prove ‘XC

intersect Q = {}’, we can avoid querying the

XML data source, which saves time for connecting to

and querying a remote data source and thus reduces

network load.

Furthermore, when X(Q) is the XPath expression

that describes the XML fragment needed to answer a

given query Q, the logical subsumption test can be used

to check whether Q can be fully answered from the

content of a cache described by an XPath expression C

by proving X(Q) ⊆ C.

The contributions of this paper are:

• A rule set for logical simplification of any XPath

expression.

• The general form of the reverse pattern E-1 of an

XPath expression E. The application of E-1 to the

current context node returns a non-empty result if

E matches the current context node.

• A general approach for eliminating the

intersect XPath 2.0 operator and thus the

reduction of the logical intersection test of two

XPath expressions to the satisfiability test of the

resultant XPath expression.

• A general approach for eliminating the except

XPath 2.0 operator and thus the reduction of the

logical subsumption test of two XPath expressions

to the satisfiability test of the resultant XPath

expression.

• A performance analysis that shows that, depending

on the used query evaluator and on the original

query, we achieve high speed-up factors if we can

simplify the XPath query to the empty expression,

if we can eliminate reverse axes, or if we can

eliminate many location steps. Otherwise, the

simplified queries are in most cases a little bit

faster and in few cases a little bit slower.

In Section 2, we introduce the reverse pattern of an

XPath query, which is used in Section 3 to eliminate

the intersect operator and in Section 4 to eliminate

the except operator. Section 5 describes the

proposed rule set for XPath queries. Section 6 presents

a performance analysis of the achieved speed-up

factors of XPath evaluation. The paper ends up with

the further related work in Section 7 and the summary

and conclusions in Section 8.

2. Reverse Pattern

Let us assume that an XPath expression E is given,

which is used as pattern. We will show that evaluating

the reverse pattern E-1 of E as a filter expression of an

XML node $d, i.e. $d[E-1], will return a non-empty

result if E matches the XML node $d.

We present an extended variant of the approach in

[16] for a superset of the XPath patterns of XSLT.

Contrary to our contribution, the approach presented in

[16] only supports the XPath patterns of XSLT and not

complete XPath, which is supported by our approach.

For the purpose of the determination of the reverse

pattern of a given XPath expression, we first define the

reverse axes of an XPath axis.

Definition 1 (reverse axes of an XPath axis): The

reverse axes of a given XPath axis are defined in the

middle column of Figure 1.

Note that the parent of an attribute or of a

namespace node is its element node, but an attribute or

namespace node is not a child of its element node.

Therefore, attribute nodes and namespace nodes cannot

be accessed by the child or descendant axes, and

also not by the descendant-or-self axis, if the

attribute node or namespace node is not the current

context node. An attribute node can only be accessed

by the attribute axis and a namespace node only

by the namespace axis. Thus, there is more than one

reverse axis of the ancestor, ancestor-or-

self or parent axis (see Figure 1).

Axis A Reverse Axes of A Additional Test

ancestor 1) descendant

2) descendant-or-
self::node()/attribute

3) descendant-or-
self::node()/namespace

[self instance of

element()*]

ancestor-

or-self
1) descendant-or-self

2) descendant-or-
self::node()/attribute

3) descendant-or-
self::node()/namespace

attribute parent [self instance of

attribute()*]

child parent [self instance of

element()*]

descendant ancestor [self instance of

element()*]

descendant

-or-self

ancestor-or-self

following preceding [self instance of

element()*]

following-

sibling

preceding-sibling

namespace parent [not(self instance

of element()*) and

not(self instance of

attribute()*)]

parent 1) child

2) attribute

3) namespace

[self instance of

element()*]

preceding following [self instance of

element()*]

preceding-

sibling

following-sibling

self self

Figure 1: Reverse axes and additional test of an XPath axis

The reverse axis of the attribute axis, of the

child axis and of the namespace axis is the

parent axis, which does not differ between attribute

nodes, namespace nodes and other nodes (in

comparison to the original axis). Therefore, we will use

an additional test (see Definition 2) in the definition of

the reverse pattern (see Definition 3) to distinguish

between the different node types, which describe the

restrictions of the resultant nodes of the axes given in

Figure 1.

Definition 2 (additional test): The additional test of a

given XPath axis is defined in the right column of

Figure 1.

Definition 3 (reverse pattern of an XPath

expression): The reverse pattern of an XPath

expression is computed as follows: At first, we

transform the XPath expression into its long form. We

eliminate as often the innermost intersect operator

or except operator respectively in the expression

according to Section 3 or Section 4 respectively as

there are intersect or except operators. If there

are disjunctions (“|”) outside the scope of filter

expressions in the XPath expression, then we factor out

the disjunctions and reverse each expression of the

disjunctions separately. The whole reverse pattern is

the disjunction of all separately reversed expressions.

Each filter expression remains unchanged. Without

disjunctions outside the scope of filter expressions, a

relative XPath expression Erelative has the form

 axis1::test1[F11]…[F1n1]/

 axis2::test2[F21]…[F2n2]/…/

 axism::testm[Fm1]…[Fmnm],

and an absolute XPath expression Eabsolute has the

form

 /axis1::test1[F11]…[F1n1]/

 axis2::test2[F21]…[F2n2]/…/

 axism::testm[Fm1]…[Fmnm]

where axisi are XPath axes, testi are node tests

and Fij are filter expressions. The reverse pattern of

Erelative and of Eabsolute is

 self::testm[Fm1]…[Fmnm] Tm/

 (raxism1::testm-1|…|
 raxismpm::testm-1)[F(m-1)1]…[F(m-1)nm-1] Tm-1/

 …/
 (raxis21::test1|…|
 raxis2p2::test1)[F11]…[F1n1] T1/

 (raxis11::node()|…|raxis1p1::node()) Troot,

where Troot is [self::node() is root()] for

Eabsolute and Troot is [self::node() is $c] for

Erelative, $c must contain the context node, raxisi1 ...

raxis1pi are the reverse axes of axisi, and Ti is the

additional test of axisi, or Ti is the empty expression,

if there is no additional test of axisi.

Example 1 (reverse pattern): The reverse pattern of

child::object is

self::object[self instance of element()*]/

parent::node()[self::node() is $c],

the reverse pattern of / is

 self::node()[self::node() is root()],

and the reverse pattern of

/child::contains/child::object[position()=1] |
 ancestor::object[attribute::name=’cockpit’]

is

 self::object[position()=1]

 [self instance of element()*]

 /parent::contains[self instance of

 element()*]

 /parent::node()[self::node is root()] |

 self::object[attribute::name=’cockpit’]

 [self instance of element()*]

 /(descendant::node() |
 descendant-or-self::node()/attribute::node()|
 descendant-or-self::node()/namespace::node())

 [self::node() is $c].

Proposition 1 (match test by applying the reverse

pattern): An XPath pattern E matches an XML node

$d if $d[E-1] can be evaluated to a non-empty set,

where E-1 is the reverse pattern of E.

Proof of Proposition 1: Proposition 1 can be proved

by considering each step in the evaluation of the

proposed match tests and by considering each step in

the definition of the reverse pattern for every

combination of the axis and of the node tests. ⁭

3. Intersection Operator

In the following section, we present how the

intersect XPath 2.0 operator can be simplified.

Given the XPath expressions XP1 and XP2, the XPath

expression XP1 intersect XP2 returns those

XML nodes, which are contained in XP1 and in XP2.

For the purpose of eliminating the intersect

operator, we define the equivalence of XPath

expressions.

Definition 4 (equivalence of XPath expressions): Two

XPath expressions XP1 and XP2 are equivalent, which

we notate XP1 ≡ XP2, if XP1 returns the same XML

nodes as XP2 for all possible input XML documents

and for all possible context nodes.

Proposition 2 (intersection without intersect

operator): XP1 intersect XP2 ≡ XP1[XP2-1],

where XP1 and XP2 are XPath expressions and XP2-1

is the reverse pattern of XP2.

Proof of Proposition 2: The evaluation of the XPath

expression XP1 returns the XML nodes of XP1. We

can test those XML nodes of XP1, whether they are

also contained in XP2, by applying the reverse pattern

of XP2 in a filter after XP1, i.e. XP1[XP2-1]. As the

XPath expression XP1 intersect XP2 returns

those XML nodes, which are contained in XP1 and in

XP2, XP1[XP2-1] is equivalent to XP1

intersect XP2. ⁭

4. Except Operator

In the following section, we present how the

except XPath 2.0 operator can be eliminated. Given

the XPath expressions XP1 and XP2, the XPath

expression XP1 except XP2 returns those XML

nodes, which are contained in XP1, but which are not

contained in XP2.

Proposition 3 (difference without except operator):

XP1 except XP2 ≡ XP1[not(XP2-1)], where

XP1 and XP2 are XPath expressions and XP2-1 is the

reverse pattern of XP2.

Proof of Proposition 3: The XPath expression XP1

returns the XML nodes of XP1. We can test those

XML nodes of XP1, whether they are not contained in

XP2, by checking, if the reverse pattern of XP2 cannot

be applied in a filter after XP1, i.e.

XP1[not(XP2-1)]. As the XPath expression

XP1 except XP2 returns those XML nodes, which

are contained in XP1, but not contained in XP2,

XP1[not(XP2-1)] is equivalent to

XP1 except XP2. ⁭

Proposition 4: XPath 1.0 is closed under

complementation.

We need following lemma for the proof of

Proposition 4.

Lemma 1: The most general XPath query

Gall := /descendant-or-self::node() |

 /descendant-or-self::node()/attribute::node()|

 /descendant-or-self::node()/namespace::node()

returns all XML nodes of an XML document.

Proof of Lemma 1: /descendant-or-self::

node() describes the document node of an XML

document and all its descendant nodes except of all

attribute nodes, which are described by
/descendant-or-self::node()/attribute

::node(), and all namespace nodes, which are

described by /descendant-or-self::node()/

namespace::node(). There are no other XML

nodes than these in an XML document. ⁭

Proof of Proposition 4: The complement of a query Q

is Gall except Q ≡ Gall[not(Q
-1)]. ⁭

Note that certain subsets of XPath are not closed

under complementation [3]. In comparison, XPath 1.0

can test whether a node of the current location step is

the document node by

[self::node() is root()] or is the context

node by [self::node() is $c], where $c must

contain the context node. We use these tests in the

definition of the reverse patterns.

Any extension of Core XPath [8], which is closed

under complementation, can define every first order

definable set of paths [15]. Thus, XPath 1.0 is first

order complete (see Proposition 4).

5. Simplification

In order to evaluate XP1[XP2-1] or

XP1[not(XP2-1)] respectively, current

implementations of XPath evaluators determine first all

XML nodes of XP1 and then test the filter expression

XP2-1 or not(XP2-1) respectively. In the following,

we present simplification rules, which simplify the

given XPath query logically.

The goals to achieve are that

• the XPath evaluator does not first determine all

XML nodes of XP1 and then apply the filter,

• instead we exclude intermediate XML nodes of

location paths, which do not contribute to the final

result, as early as possible.

Therefore, the goals of our heuristic method are that

• sub-expressions are reduced to the empty path,

wherever possible.

• the XPath query does not contain a reverse axis so

that the XPath evaluator processes only forward

axes.

• our approach eliminates the not(…) operator,

wherever possible.

• our approach eliminates location steps with a

self axis, wherever possible, in order to avoid

unnecessary location steps.

5.1. Supported Subset of XPath

By using our approach as already described in

Section 2., Section 3. and Section 4., we can eliminate

the except and intersect operator within all

XPath expressions.

The proposed rule set (see Section 5.2) simplifies

sub-expressions of the original query, which conform

to the subset of XPath of Figure 2. Note that sub-

expressions, which do not conform to the subset of

XPath of Figure 2, do not cause an error, but these sub-

expressions are only partially simplified.

path ::= relPath | "/" relPath | path "|" path.

relPath ::= axis "::" nodetest | relPath[qualif] |

relPath "/" relPath | ⊥.

qualif ::= path | qualif "and" qualif | qualif "or"

qualif | "not(" qualif ")" | "self

instance of" ("element()*" |

"attribute()*") | "self::node() is

root()".

axis::= "child" | "descendant" | "attribute" |

"self" | "descendant-or-self" | "following-

sibling" | "following" | "namespace" |

"parent" | "ancestor" | "ancestor-or-self".

nodetest ::= ("element" | "attribute" | "text" |

"comment" | "document-node" |

"comment" | "processing-instruction"

| "node") "()" | "*" | name.

where ⊥ represents the empty expression and name

represents a name test.

Figure 2: Supported subset of XPath for simplification

of sub-expressions.

5.2. Used Rule Set

First, we introduce the term of the more restrictive

node tests, which will be used in the presented rule set.

Definition 5 (more restrictive): We call a node test t1

more restrictive than a given node test t2, which we

notate t1 « t2, if the following condition holds: t1 is

not identical to t2. Furthermore, if self::t1 returns

the context node, then also self::t2 returns the

context node for all possible context nodes.

Proposition 5 (more restrictive): The name test is

more restrictive than *, attribute() is more restrictive

than *, * is more restrictive than element(), {text(),

comment(), document-node(), processing-instruction()}

are more restrictive than element(), the name test and

{*, element(), attribute(), text(), comment(), document-

node(), processing-instruction()} are more restrictive

than node().

Proof of Proposition 5: We can conclude Proposition

5 from [21]. ⁭

We notate t1۞t2 if t1 is the name node test and

t2∈{element(), attribute()}, or t1∈{element(),

attribute()} and t2 is the name node test. These

combinations of node tests do not exclude each other,

although it holds that not(t1«t2) and

not(t2«t1).

We use the approach of [17] (and in more detail the

rule set RuleSet2 of [17]) in order to eliminate all

reverse axes of the given XPath query. As [17] does

not contain a rule set in order to simplify XPath

queries, we introduce a rule set, the application of

which simplifies XPath expressions by a heuristic

method after the application of the rule set of [17]. We

apply a rule of the proposed rule set in the following

way: We start with the subexpressions with the most

location steps. We first check whether a subexpression

in the XPath expression fits to the left side of a rule and

if there is an additional condition on the right side, we

also check whether the condition of the right side is

fulfilled. If and only if we successfully checked the

subexpression, then we replace the subexpression with

the subexpression on the right side of the rule. We

proceed to simplify the XPath expression as long as we

can apply a rule, which modifies the XPath expression,

of the proposed rule set.

In the following, let p, p1, p2, p3 and p4 be

(relative or absolute) paths, let t1 and t2 be node

tests, let a1 and a2 be forward axes (if a1 and a2 are

not stated to be reverse axes) and F stands for an

expression, which is the empty expression ⊥ or a

predicate.

The rules do not deal explicitly with the special

case in which a result starts with p[p1], where p is

the empty expression ⊥ or the document root / and p1

is an XPath expression. In this case, we implicitly

replace p[p1] with p self::node()[p1].

If a sub-expression in a path is reduced to the empty

expression ⊥, then the entire path is reduced to the

empty expression ⊥:

p1/⊥/p2 ≡ ⊥

Furthermore, if an operand in a disjunctive

expression is reduced to the empty expression ⊥, we

implicitly replace the whole disjunctive expression with

the other operand:

⊥ | p ≡ p

p | ⊥ ≡ p

The rules for simplifying expressions, which

contain the self axis, are as follows:

 a1::t1 F if t1 « t2 or t1 = t2

a1::t1[self::t2 F] ≡ a1::t2 F if t2 « t1

 a1::t1[self::t2 F] if t1۞t2

 ⊥ otherwise

 a1::t1 F if t1 « t2 or t1 = t2

a1::t1/self::t2 F ≡ a1::t2 F if t2 « t1

 a1::t1/self::t2 F if t1۞t2

 ⊥ otherwise

p/a1::t1[self instance of element()*] ≡

 p/a1::element() if element()«t1 or t1=element()

 p[self instance of element()*]/a1::t1 if a1=self

 p/a1::t1 if t1«element(), or a1∈{child,
descendant, following, following-

sibling}

 ⊥ otherwise

p/self::t1[self::node() is root()] ≡

 p[self::node() is root()]/self:t1

p/self::t1[not(self::node() is root())] ≡

 p[not(self::node() is root())]/self:t1

/self::node()/p ≡ /p

p/a1::t1[self::node() is root()] ≡ ⊥ if a1≠self

/self::t1[self::node() is root()] ≡ /self::t1

p/a1::t1[self instance of attribute()*] ≡

 p/a1::t1 if a1 = attribute

 p/a1::attribute() if attribute()«t1 or t1=attribute()

 p[self instance of attribute()*]/a1::t1 if a1=self

 ⊥ otherwise

The following rules consider the not(…) operator:

not(p1/p2) ≡ not(p1) or p1[not(p2)]

not(p1[p2]) ≡ not(p1) or p1[not(p2)]

not(p1 | p2) ≡ not(p1) and not(p2)

not(p1 or p2) ≡ not(p1) and not(p2)

not(p1 and p2) ≡ not(p1) or not(p2)

not(not(p)) ≡ p

p[p1][not(p1)] ≡ ⊥

The following rules eliminate different operators in

filter expressions:

p1[p2 or p3] ≡ p1[p2] | p1[p3]

p1[p2 | p3] ≡ p1[p2] | p1[p3]

p1[p2 and p3] ≡ p1[p2][p3]

We eliminate equivalent expressions in disjunctions

and factor out disjunctions:

p | p ≡ p

p1(/p2 | /p3) ≡ p1/p2 | p1/p3

(p1 | p2)/p3 ≡ p1/p3 | p2/p3

The following rules simplify expressions with and

or or operators:

p1 and p1[p2] ≡ p1[p2]

p1 and p1/p2 ≡ p1/p2

p1 and (p2 or p3) ≡ (p1 and p2) or (p1 and p3)

(p1 or p2) and p3 ≡ (p1 and p3) or (p2 and p3)

The following rules deal with location steps

containing the not(…) operator:

p/a1::t1[not(parent::t2)]≡ p[not(self::t2)]/a1::t1

 if a1∈{child, attribute, namespace}

p/a1::t1[not(self::t2)] ≡

 ⊥ if t1 = t2 or t1 « t2

 p/a1::t1 if both, t1 and t2 are name tests and t1 ≠ t2,

if t1 ≠ t2 and t1, t2 ∈ {attribute(), text(),

comment(), document-node(), processing-

instruction()},

if a1∈{child, descendant, following,

following-sibling} and t2=attribute(), or

if a1=attribute and t2 is not an attribute(), *

nor a name test.

p/descendant::t1[not(parent::t2)]≡ p/descendant-or-

self::node()[not(self::t2)]/child::t1

p/following-sibling::t1[not(a2::t2)] ≡

 p[not(a2::t2)]/following-sibling::t1

 if a2 ∈ {parent,ancestor}

p/a1::t1[not(self::node() is root())] ≡ p/a1::t1

 if a1≠self

p/a1::t1[not(ancestor::t2)] ≡

p[not(self::t2)][not(ancestor::t2)]/a1::t1

 if a1∈{child, attribute, namespace}

/self::t1[not(self::node() is root())] ≡ ⊥

We have factored out the disjunctions before so that

we can apply simple rules for the simplification of the

XPath expressions. After no rule from the above rule

set can be applied, we apply the following rules as long

as possible in order to combine common sub-

expressions of the XPath expression again:

p1/p2 | p1/p3 ≡ p1/ (p2 | p3)

p1/p2 | p3/p2 ≡ (p1 | p3)/p2

Example 2 (intersect): Let XP1 = /child::a/child::b, let

XP2 = /child::a/child::b[child::c]. Then XP1 intersect

XP2 ≡ /child::a/child::b[self::b[child::c][self

instance of element()*]/parent::a[self instance of

element()*]/parent::node()[self::node() is root()]]

according to Section 3, which can be transformed to the

simplified query /child::a/child::b[child::c] using

our proposed rule set.

Example 3 (intersect): Let XP1 = /child::node()/self::

a/child::node()/self::b, let XP2 = /descendant-or-self

::c/ancestor-or-self::b. Then XP1 intersect XP2 ≡
/child::node()/self::a/child::node()/self::b[self::b

/descendant-or-self::c/ancestor-or-self::node()[self

::node() is root()]] according to Section 3, which can

be transformed to the simplified query

/child::a/child::b[descendant::c] using our proposed

rule set.

Example 4 (except): Let XP1 = /child::a/child::b, let

XP2 = /child::a/child::b[child::c]. Then XP1 except

XP2 ≡ /child::a/child::b[not(self::b[child::c][self

instance of element()*]/parent::a[self instance of

element()*]/parent::node()[self::node() is root()])]

according to Section 4, which can be transformed to the

simplified query /child::a/child::b[not(child::c)]

according to our proposed rule set.

Example 5 (except): Let XP1 = /child::node()/self::a

/child::node()/self::b, let XP2 = /descendant-or-self::

c/ancestor-or-self::b. Then XP1 except XP2 ≡

/child::node()/self::a/child::node()/self::b[not(

self::b/descendant-or-self::c/ancestor-or-self::node

()[self::node () is root()])] according to Section 3,

which can be transformed to the simplified query

/child::a/child::b[not(descendant::c)] using our

proposed rule set.

6. Performance Analysis

We present the experimental environment in Section

6.1. The first data set used in the experiments consists

of synthetic data especially designed so that we can

show the relationship between the achieved speed-up

and the selectivity (see Section 6.2). We use the data

set of the XPathMark Benchmark [7] for the second

data set in order to show the achieved speed-up factors

for typical queries (see Section 6.3).

6.1. Experimental Environment

The test system for all experiments is an Intel

Pentium 4 processor 1.7 Gigahertz with 1 Gigabyte

RAM, Windows XP as operating system and Java VM

build version 1.4.2. We use the XQuery evaluators

Saxon [14] version 8.0 and Qizx version 0.4p1 [6] in

order to process the XPath expressions.

6.2. First Data Set

The first data set used in the experiments consists of

synthetic data. The used XML documents contain root

elements <a>, the child nodes of which are

elements. The elements have exactly one child

node, which is either a <c> element or a <d> element.

We vary the size of the XML document by the number

of elements and we vary the selectivity of the

queries, which is defined to be the division of the size

of the result by the size of the input, by varying the

number of <c> and <d> elements.

The speed-up factor is defined to be the quotient of

the execution time of the original query and the

execution time of the simplified query using the same

data set. While evaluating the original and the

simplified queries of Example 2 and of Example 4, the

achieved speed-up factors are between 0.88 and 1.105,

i.e. we do not achieve high speed-up factors for the

simplified XPath expressions.

We present the execution time of the Qizx evaluator

of the original query ‘XP1 intersect XP2’ of

Example 3 in Figure 3, and the execution time of the

simplified query of Example 3 in Figure 4. We present

the speed-up factors of the queries of Example 3 in

Figure 5 for the Qizx evaluator.

Figure 3: Execution time of the original query XP1

intersect XP2 of Example 3 using the Qizx evaluator

Figure 4: Execution time of the simplified query of Example

3 using the Qizx evaluator

Figure 5: Speed-up factors of the queries of Example 3 using

the Qizx evaluator

Figure 6: Execution time of the original query XP1

intersect XP2 of Example 3 using the Saxon evaluator

Figure 7: Execution time of the simplified query of Example

3 using the Saxon evaluator

Figure 8: Speed-up factors of the queries of Example 3 using

the Saxon evaluator

Figure 9: Speed-up factors of the queries of Example 5 using

the Qizx evaluator

Figure 10: Speed-up factors of the queries of Example 5

using the Saxon evaluator

Furthermore, we present the execution time of the

Saxon evaluator of the original query ‘XP1

intersect XP2’ of Example 3 in Figure 6 and the

execution time of the simplified query of Example 3 in

Figure 7. To compare the execution times of the

original query with the simplified query, we present the

speed-up factors of the queries of Example 3 in Figure

8 for the Saxon evaluator.

Furthermore, we show the speed-up factors of the

queries of Example 5 for the Qizx evaluator in Figure 9

and for the Saxon evaluator in Figure 10. The Saxon

evaluator has exponential runtime for the original

queries depending on the size of the input XML

document so that the speed-up factors increase with the

file size and are up to 93 times. The Qizx evaluator

appears to internally optimize more than the Saxon

evaluator, but we still achieve speed-up factors of up to

30%.

6.3. Second Data Set, XPathMark Data Set

Combination

of

XPathMark

queries

(X1, X2)

Name of
X1

inter

sect

X2

Name

of X1
excep

t X2

Combination

of

XPathMark

queries

(X1, X2)

Name

of X1
inter

sect

X2

Name

of X1
excep

t X2

(Q1, Q5) I1 E1 (Q10, Q12) I10 E10

(Q1, Q12) I2 E2 (Q12, Q36) I11 E11

(Q1, Q22) I3 E3 (Q12, Q42) I12 E12

(Q1, Q36) I4 E4 (Q22, Q36) I13 E13

(Q1, Q42) I5 E5 (Q22, Q42) I14 E14

(Q5, Q12) I6 E6 (Q2, Q3) I15 E15

(Q5, Q22) I7 E7 (Q2, Q4) I16 E16

(Q5, Q36) I8 E8 (Q3, Q4) I17 E17

(Q5, Q42) I9 E9

Figure 11: Names of the original queries (containing an

intersect operator or an except operator, the operands

of which are XPathMark queries) used for the experiments.

In the following experiments, we use the data set

and the queries of the XPathMark Benchmark [7] in

order to show the achieved speed-ups for typical XPath

queries. We have generated data from 0.116 Megabytes

to 11.597 Megabytes by using the data generator of the

XPathMark Benchmark. Figure 11 presents the used

queries in the experiments. Additionally, we use the

query Pi=//keyword(/parent::node()/child::keyword)
i

in order to show speed-up factors after eliminating

XPath reverse axes, where Ai stands for i iterations of

an XPath expression A. We use

Si=//keyword(/self::keyword)
i in order to demonstrate

the achieved speed-up factors after eliminating a

location step containing a self axis. Altogether, we

measured the speed-up factors of 49 queries achieved

by using our approach. Figure 12 and Figure 14 present

the achieved speed-up factors of the queries E17, E15,

E16, P1 to P5 and S10 to S100 when using the

Saxon evaluator. Figure 13 and Figure 15 present the

achieved speed-up factors of the queries E17, E15,

E16, P1 to P5 and S10 to S100 when using the Qizx

evaluator. Summarizing the experimental results, we

achieve high speed-up factors if we can simplify the

XPath query to the empty expression (E7, E15 and E16),

if we can eliminate reverse axes (P1 to P5), or if we can

eliminate many location steps (S10 to S100). Otherwise,

the simplified queries are nearly as slow as the original

queries, i.e. their executions vary from 12% slower to

50% faster. The average speed-up factor of all queries

is 1.3, i.e. the execution of the simplified queries is

30% faster. The execution of the simplified queries is

900% faster, when using Qizx.

Figure 12: Speed-up factors of queries of P1 to P5, E7, E15

and E16 using Saxon

Figure 13: Speed-up factors of queries of P1 to P5, E7, E15

and E16 using Qizx

Figure 14: Speed-up factors of queries of S10 to S100

using Saxon

Figure 15: Speed-up factors of queries of S10 to S100

using Qizx

7. Further Related Work

Whereas [8] and [9] describe algorithms in order to

evaluate XPath queries, we logically simplify the

XPath query.

[5] describes how wildcard steps can be eliminated

in an XPath query, which we neglect in our approach.

[19] shows that, in fact, equivalence and minimality of

simple XPath expressions can be decided in

polynomial time. In presence of a DTD, the decision

whether or not two expressions (without wildcards) are

equivalent according to a DTD is coNP-hard [19].

[2] deals with the complexity of XPath satisfiability

tests in the presence of DTDs. We can use our

contributions to extend the results of [2] to the

containment test and the intersection test of XPath

expressions. [10] describes the satisfiability test of

XPath queries according to the constraints given by an

XML Schema definition, while we use a set of rules to

check XPath satisfiability. [11] presents how to use the

presented approaches of this paper for a static analysis

of XSLT stylesheets as part of the optimization of

XSLT stylesheets.

[1] deals with the minimization of tree pattern

queries both in the absence and in the presence of

integrity constraints. Tree patterns queries are tree

patterns, where nodes are types and edges are child

or descendant relationships, which do not consider

order. The goals of our rule set are to eliminate

redundant constructs in XPath (which do not occur in

tree pattern queries), to support a bigger subset of

XPath than tree pattern queries and the optimizations

of these queries.

[12] and [13] present approaches for optimizing

XQuery [12] or XSLT [13] queries, but these

approaches do not modify the XPath expressions

embedded in the XQuery queries or XSLT stylesheets.

In comparison to all other contributions, we present

a method, which eliminates the intersect and

except XPath 2.0 operators. Furthermore, we

propose a rule set, which simplifies a given XPath

query by a heuristic method.

8. Summary and Conclusions

We first introduce reverse patterns of XPath

expressions, which can be used in order to check

whether an XML node matches an XPath pattern.

Then, we use these reverse patterns in order to

eliminate the intersect and except XPath 2.0

operators. Afterwards, we apply a rule set to the

resultant XPath expression in order to optimize its

evaluation time.

The application of the proposed rule set is not

restricted to those XPath queries, which are the result

of the intersect and except elimination, and can

be applied in general.

Summarizing the experimental results, we achieve

high speed-up factors (up to the factor 350) if we can

simplify the XPath query to the empty expression, if we

can eliminate reverse axes, or if we can eliminate many

location steps. Otherwise, the simplified queries are in

most cases a little bit faster and in few cases a little bit

slower.

Because XPath expressions play a key role in

XQuery expressions, it appears to be promising to

investigate how our simplification approach can be

extended to the XQuery language.

10. References

[1] Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S., and

Srivastava, D., Minimization of Tree Pattern Queries, ACM

SIGMOD 2001, Santa Barbara, California, USA, 2001.

[2] Benedikt, M., Fan, W., and Geerts, F., XPath

Satisfiability in the Presence of DTDs, In Proceedings of

PODS 2005, Baltimore, Maryland, USA, 2005.

[3] Benedikt, M., Fan, W., and Kuper, G. M., Structural

Properties of XPath Fragments, ICDT 2003, Siena, Italy,

2003.

[4] Böttcher, S., and Steinmetz, R., Adaptive XML Access

Control Based on Query Nesting, Modification and

Simplification. BTW 2005, Karlsruhe, Germany, 2005.

[5] Chan, C.-Y., Fan, W., and Zeng, Y., Taming XPath

Queries by Minimizing Wildcard Steps, In VLDB, Toronto,

Canada, 2004.

[6] Franc, X., Qizx/open version 0.4p1,

http://www.xfra.net/qizxopen/, 2004.

[7] Franceschet, M., XPathMark - An XPath benchmark for

XMark. Research report PP-2005-04, University of

Amsterdam, The Netherlands, 2005.

[8] Gottlob, G., Koch, C., and Pichler, R., Efficient

Algorithms for Processing XPath Queries, In VLDB 2002,

Hong Kong, China, 2002.

[9] Gottlob, G., Koch, C., and Pichler, R., The Complexity of

XPath Query Evaluation, In PODS, San Diego, California,

USA, 2003.

[10] Groppe J., Groppe S. Filtering Unsatisfiabile XPath

Queries, ICEIS 2006, Paphos-Cyprus, May 2006.

[11] Groppe, S., XML Query Reformulation for XPath,

XSLT and XQuery, Sierke-Verlag, Göttingen, Germany,

2005, ISBN 3-933893-24-0.

[12] Groppe, S., and Böttcher, S., Schema-based query

optimization for XQuery queries, ADBIS 2005, Talinn,

Estonia, 2005.

[13] Groppe, S., Böttcher, S., Birkenheuer, G., and Höing,

A., Reformulating XPath Queries and XSLT Queries on

XSLT Views, Journal Data & Knowledge Engineering, to

appear soon,

http://www.sciencedirect.com/science/journal/0169023X.

[14] Kay, M. H., Saxon - The XSLT and XQuery Processor,

http://saxon.sourceforge.net, April 2004.

[15] Marx, M., First Order Paths in Ordered Trees, I

Proceedings of the 10th International Conference of

Database Theory (ICDT 2005), Edinburgh, UK, 2005.

[16] Moerkotte, G., Incorporating XSL Processing Into

Database Engines. In VLDB, Hong Kong, China, 2002.

[17] Olteanu, D., Meuss, H., Furche, T., Bry, F., XPath:

Looking Forward, XMLDM, Prague, Czech Republic, 2002.

[18] Tajima, K., and Fukui, Y., Answering XPath Queries

over Networks by Sending Minimal Views, In VLDB,

Toronto, Canada, 2004.

[19] Wood, P. T., Minimising Simple XPath Expressions, In

WebDB, Santa Barbara, California, 2001.

[20] World Wide Web Consortium (W3C), XML Path

Language (XPath) Version 1.0, W3C Recommendation,

http://www.w3.org/TR/xpath/, 1999.

[21] World Wide Web Consortium (W3C), XML Path

Language (XPath) Version 2.0, W3C Working Draft,

http://www.w3.org/TR/xpath20/, 2003.

