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Abstract—Extensible Markup Language (XML) is emerging as a de facto standard for information exchange among various

applications on the World Wide Web. There has been a growing need for developing high-performance techniques to query large XML

data repositories efficiently. One important problem in XML query processing is twig pattern matching, that is, finding in an XML data

tree D all matches that satisfy a specified twig (or path) query pattern Q. In this survey, we review, classify, and compare major

techniques for twig pattern matching.1 Specifically, we consider two classes of major XML query processing techniques: the relational

approach and the native approach. The relational approach directly utilizes existing relational database systems to store and query

XML data, which enables the use of all important techniques that have been developed for relational databases, whereas in the native

approach, specialized storage and query processing systems tailored for XML data are developed from scratch to further improve XML

query performance. As implied by existing work, XML data querying and management are developing in the direction of integrating the

relational approach with the native approach, which could result in higher query processing performance and also significantly reduce

system reengineering costs.

Index Terms—XML query processing, twig pattern matching.
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1 INTRODUCTION

EXTENSIBLE Markup Language (XML) is emerging as a de
facto standard for information exchange among various

applications on the World Wide Web due to XML’s inherent
data self-describing capability and flexibility of organizing
data [25]. There has been a growing need for developing
high-performance techniques to query large XML data
repositories efficiently.

First, data in XML documents are self-describing. Similar

to the popular Hypertext Markup Language (HTML), XML

is based on so-called nested tags. Fig. 1a shows an example

of an XML document, which records information about

publishers. However, unlike HTML, in which tags asso-

ciated with data express the presentation style (for example,

font style) of data, tags in XML describe the semantics of

data. For example, Lines 1–3 in Fig. 1a say that “Cambridge”

is an address of a publisher whose name is “MIT Press.”

This self-describing capability of XML data helps applica-

tions on the Web “understand” the content of XML

documents published by other applications.

Second, XML is flexible in organizing data. The hierarchy

formed by nested tags structures the content of XML

documents. The role of nested tags in XML is somewhat

similar to that of schemas in relational databases. At the

same time, the nested XML model is far more flexible than

the flat relational model. In an XML document, objects of

the same type might have different types of subobjects or

different numbers of subobjects of the same type. For

example, in Fig. 1a, the first publisher, but not the second

publisher, has an address subelement. The book under the

first publisher has two author subelements, but the book

under the second publisher has only one.

1.1 Data Model

1.1.1 Basic Model: Trees

The basic data model of XML is a labeled and ordered tree.

Figs. 2a and 2b show the data tree of the XML document in

Fig. 1a (the pair of numbers adorning each node will be

discussed in Section 2.1). Fig. 2a is based on the node-labeled

model, with labels on nodes, and Fig. 2b is based on the

edge-labeled model, with labels on edges. These two models

are equivalent. We discuss XML data trees based on the

node-labeled model, and analogous points hold for the

edge-labeled model. There are basically three types of

nodes in a data tree:

1. Element nodes (internal nodes). These correspond to
tags in XML documents, for example, publisher.

2. Attribute nodes (internal nodes). These correspond to
attributes associated with tags in XML documents,
for example, “@name.” In contrast to element nodes,
attribute nodes are not nested (that is, an attribute
cannot have any subelements), are not repeatable
(that is, two same-name attributes cannot occur
under one element), and are unordered (that is,
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1. The most recent literature discussed in this survey was published in
the Proceedings of the 22nd IEEE International Conference on Data Engineering
(ICDE ’06). Given the vast amount of literature on XML, it is difficult to
cover everything. We chose to focus on reviewing major techniques for twig
pattern matching, which is an issue of major importance in XML query
processing. Due to the space limit, we had to omit some other important
topics related to XML query processing such as XML publishing (of
relational data), answering XML queries by using XML views, and
minimizing XML queries.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: West Virginia University. Downloaded on June 29, 2009 at 14:19 from IEEE Xplore.  Restrictions apply.



attributes of an element can freely interchange their
occurrence locations under the element).

3. Value nodes (leaf nodes). These correspond to data
values in XML documents, for example, “MIT Press.”

Edges in a data tree represent structural relationships
between elements, attributes, and values.

Note that in an XML data tree, some nodes with the same
name might be nested on the same path. We call this
phenomenon recursion. For instance, in a book data tree [28],
multiple section nodes might be nested on the same path.
Recursion occurs fairly frequently in XML data in practice.
Choi [21] investigated 60 document type descriptors
(DTDs),2 among which 35 are recursive. As we shall see
in Section 4.1, recursion in XML data significantly increases
the complexity of efficiently querying XML data.

1.1.2 The Extended Model: Directed Acyclic Graphs

(DAGs) and General Graphs

XML documents allow users to define ID/IDREF attributes
of elements, where an ID attribute uniquely identifies an
element, and IDREF attributes refer to other elements that
are explicitly identified by their ID attributes. Fig. 1b shows
an XML document with ID/IDREF attributes. ID/IDREF
attributes increase the flexibility of the XML data model and
extend the basic tree model to DAGs or to even more
general directed graphs with cycles. Fig. 2c shows an XML
data graph with cycles, which corresponds to the XML
document in Fig. 1b.

1.2 XML Queries

Unlike (flat) text documents, XML documents have nested
structure. Thus, XML queries concern not only the content
but also the structure of XML data. Basically, the queries
can be formed using twig patterns, in which nodes represent
the terms that the user is interested in, that is, the content
part of queries, and edges represent the structural relation-
ships that the user wants to hold between the terms, that is,
the structural part of queries.

We categorize XML queries into two classes: database-
style queries (Section 1.2.1) and Information Retrieval (IR)-style
queries (Section 1.2.2). Database-style queries return all

query results that precisely match (the content and
structure requirements specified by) the queries, which is
similar to SQL query semantics in relational databases. On
the other hand, IR-style queries allow “imprecise” or
“fuzzy” query results, which are ranked based on their
relevance to the queries. Only the top-ranked results are
returned to users, which is similar to the semantics of
keyword search queries in the traditional IR [99] context.

1.2.1 Database-Style XML Queries

XML Path Language (XPath) [27] and XQuery [30], originally
developed and recommended by the W3C Consortium [25],
are today’s mainstream (database-style) XML query lan-
guages. As we shall see, twig patterns play a very important
role in XPath and XQuery.

XPath. XPath [27] is a basic XML query language that
selects nodes from XML documents such that the path from
the root to each selected node satisfies a specified pattern. A
simple XPath query is formulated as a sequence of
alternating axes and tags. Two most commonly used axes
are the child axis “/,” where “A=B” denotes selecting
B-tagged child nodes of A-tagged nodes, and the descendant
axis “//,” where “A==B” denotes selecting B-tagged
descendant nodes of A-tagged nodes. Consider an example:
An XPath query “=publisher==title” would return all title
elements under all top-level publisher elements. The result
of this query on the data tree in Fig. 2a is two title nodes
that have values “Databases” and “Life,” respectively.
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Fig. 2. The XML data model. (a) Node-labeled XML data tree. (b) Edge-

labeled XML data tree. (c) Node-labeled XML data graph (with ID/IDREF

edges).

2. DTD is a kind of schema of XML data, which shall be discussed further
in Section 3.4.

Fig. 1. Examples of XML documents. (a) XML document without ID/

IDREF. (b) XML document with ID/IDREF.
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The above XPath query can be formalized as a simple
path pattern, as shown in Fig. 3a(1), where the single-line
edge represents the “/” axis, the edge with “=” represents
the “//” axis, and the shaded node is an output node.
Generally, an XPath query can specify a more complex twig
pattern by using predicates in its expression. One example is
“=publisher½@name ¼MITPress�=book=title” (Fig. 3a(2)), in
which “=publisher=book=title” is the main path of the query,
and the content between “[” and “]” is a predicate. This
query returns all book titles of the publisher with name
“MIT Press.” Generally, an XPath query might involve
multiple predicates.

From the above, we can see that the core of an XPath
query is a twig pattern that includes exactly one output
node. Further, we call nodes in query twig patterns query
nodes and nodes in data trees data nodes.

Note that in addition to the child axis and the descendant
axis, XPath also defines 11 other axis types [27]: parent,
ancestor, descendant-or-self, ancestor-or-self, following, preced-
ing, following-sibling, preceding-sibling, self, attribute, and
namespace. In this survey, we focus on the “/” and “//”
axes, since they are most commonly used in practical
applications and have been of the most interest to
researchers. Ways to deal with a full set of XPath axes are
described in the work of Gottlob et al. [45], [46], [47], [48]
and of Grust et al. [50], [52], [53].

XQuery. Query language XQuery [30] is more expressive
than XPath. An XQuery query is composed of For-Let-
Where-Return (FLWR) clauses, which can be nested and
composed with full generality [11]; that is, each clause in
itself can include sub–XQuery queries. The For and Let
clauses bind nodes selected by XPath expressions to user-
defined node variables. The Where clauses specify selection or
join predicates on node variables. The Return clauses
operate on node variables to format query results in the
XML format (rather than in the simple tuple format, as in
the context of answering relational queries). Fig. 3b shows a
simple XQuery query, which groups book titles by author,
on the XML data in Fig. 1a, which instead groups authors
by book.

Although the nested/compositional syntax of XQuery
makes it much more expressive than XPath, the rich
semantics also significantly increases the optimization and
evaluation complexity of XQuery. Although an XQuery
query can be evaluated simply clause by clause by using the
nested-loop procedure implied by its syntax, such a naive
syntax-driven evaluation plan usually results in poor query
performance. For example, whereas the query in Fig. 3b

involves four path expressions (in lines 1, 6, 7, and 8,
respectively), it is really unnecessary to evaluate these four
path expressions over the XML data separately. Indeed,
these path expressions have overlapping parts, and evalu-
ating them separately would result in unnecessarily
repeated accesses to the same data nodes.

In fact, by carefully analyzing the semantics of the
XQuery query in this example, an intelligent XQuery
optimizer would be able to find an efficient evaluation
plan such as the plan shown on the right side of Fig. 3b. By
assembling the four path expressions into a single twig
pattern, the plan avoids repeated evaluation of these path
expressions. Considerable effort has been devoted to
developing such intelligent XQuery optimizers for finding
efficient XQuery evaluation plans. For example, the tree
algebra for XML (TAX) [61], generalized tree pattern (GTP)
[18], and tree logical class (TLC) [91] addressed rewriting
XQuery by using a set of predefined tree algebras. Nested
XML Tableaux (NEXT) [33] rewrote XQuery by using the
so-called NEXT syntax. The NEXT syntax is an XQuery-like
syntax, which additionally detects and explicitly expresses
the important group-by operator, which is not included in
the formal syntax of XQuery but usually exists implicitly in
the semantics of many practical XQuery queries (for
example, see the query in Fig. 3b). DeHaan et al. [32] and
Grust et al. [51] proposed prestoring tree encodings of XML
data (see Section 2.1) into relational databases and then
rewriting XQuery by using SQL.

Evaluating twig patterns is essential in physical evalua-
tion plans generated by XQuery optimizers. The reason is
that XQuery queries use XPath expressions, which are
essentially path or twig patterns, in their FLWR clauses to
bind or operate on node variables. However, unlike XPath,
XQuery does more than evaluating one single simple twig
pattern. In particular, 1) answering an XQuery query might
involve evaluating multiple twig patterns (although the toy-
example query in Fig. 3b evaluates only one), whereas an
XPath query evaluates just one. For performance purposes,
the number of such twig patterns involved in evaluating
XQuery queries should be minimized by XQuery optimi-
zers to avoid repeated evaluation of the same subpath
expressions, as discussed earlier. 2) The twig patterns
involved in XQuery queries usually include more than one
output node (for example, see title and author in the twig
pattern in Fig. 3b), whereas the twig pattern of an XPath
query has exactly one. 3) Evaluating twig patterns is not the
only operation needed for evaluating XQuery queries. To
obtain correct query results, other physical operations such
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Fig. 3. Examples: (a) XPath and (b) XQuery.
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as the group-by operation shown on the right side of Fig. 3b
usually have to be performed on the results returned by
twig pattern matching. Finally, the query results need to be
formatted in XML, as specified in the Return clauses.

1.2.2 IR-Style XML Queries

IR-style XML queries are mainly used to query text-dense
XML data repositories whose value elements typically
involve long texts. For example, the XML document in
Fig. 1a is not text dense, since most of its value elements, for
example, “Databases,” “Tom,” and “John,” include only
very short texts. However, this document would become
text dense if some new review elements containing long
texts were added under book as subelements.

Unlike database-style XML queries, there is no com-
monly agreed standard language for expressing IR-style
XML queries. We now briefly introduce two main classes of
IR-style XML queries: DB+IR queries and IR-only queries.
Note that unlike traditional IR-style queries, which are
performed at the granularity of documents, that is,
concerning all documents relevant to queries, these IR-style
XML queries are performed at the granularity of XML
elements, that is, concerning all XML elements (in XML
documents) relevant to queries.

DB+IR queries. DB+IR queries enhance database-style
XML queries such as XPath and XQuery queries with IR-
style characteristics. For instance, it is common to enhance
XPath or XQuery queries with a contains function to
perform IR-style keyword search. A simple example is
“==publisher½containsð 00Databases;00 00Tom00Þ�=@name.” It re-
turns the names of all publishers whose (child or
descendant) subelements contain approximate matches to
keywords “Databases” and “Tom.” Such contains-enhanced
DB+IR queries have been considered, for instance, in XIRQL
[43], CtreeIR [77], and FleXPath [5]. Li et al. [76] proposed to
enhance XQuery with an mlcas function to perform lowest
common ancestor (LCA) search (to be discussed shortly).

IR-only queries. The format of IR-only queries is less
rigid than that of DB+IR queries: IR-only queries do not have
the structural part and specify the content part as a set of
keywords K ¼ fK1; K2; . . . ; Kng (this is similar to keyword
search queries in the traditional IR context). The candidate
answers of IR-only queries are from the set of LCAs of those
data nodes that correspond to the keywords in K, since
LCAs typically represent the most specific answer elements
that are relevant to the given keywords. For example, an IR-
only query f 00Databases;00 00Tom00g over the data tree in
Fig. 2a will retrieve the book node under the first publisher
node, whereas the first publisher node is not retrieved
although it is a common ancestor of the “Databases” and
“Tom” nodes. Intuitively, the book element is more specifi-
cally relevant to “Databases” and “Tom” than the first
publisher element. IR-only queries have been considered in,
for instance, XRANK [54] and XKSearch [121].

Ranking. In addition to finding candidate query
results, IR-style XML queries (both DB+IR queries and
IR-only queries) need to rank the candidate query results
based on their relevance to the queries and to return to
the user only the top-ranked results, as in the traditional
IR context. Many relevance measures developed in the
traditional IR context such as keyword proximity [54] and

weighted term frequency [77] are applicable to building
ranking functions in the XML IR context. A very useful
relevance measure in the XML IR context is result
specificity [54], which ranks more specific results higher
than less specific results. The motivation is similar to that
of computing LCAs for IR-only queries.

Due to the space restriction, in the remaining survey, we
address database-style XML queries only. At the same time,
many query techniques developed for database-style XML
queries are also applicable to IR-style XML queries. For
example, Dewey coding (introduced in Section 2.1) plays a
key role in computing LCAs for IR-only queries [54], [121].

1.3 Problem Statement

As discussed in Section 1.2.1, twig pattern matching is
essential in evaluating XPath/XQuery queries. In fact, it is
one of the most important problems in XML query
processing. Formally, the problem of twig pattern matching
is to find in an XML data tree D all matches that satisfy a
given twig (or path) pattern Q. The twig pattern of an XPath
query has just one output node, and the result of twig
pattern matching is returned as a set of (answer) nodes. The
twig patterns involved in an XQuery query usually include
more than one output node, and the result of twig pattern
matching is returned as a set of node tuples, as illustrated
on the right side of Fig. 3b.

In addition to twig pattern matching, which is essential
for querying XML data, another important problem in XML
query processing is XML document filtering, which arises
mainly in applications of selective dissemination of in-
formation (SDI) [4]. A core component of SDI is a document
filter, which matches each incoming XML document D from
publishers with a collection of twig queries from subscri-
bers, to determine which subscribed queries have at least
one match in D rather than finding all matches of the
subscribed queries in D, as required by twig pattern
matching. Then, D is sent to the subscribers of the matched
queries. In most SDI applications, D arrives in the form of
data streams, that is, in its original sequential document
format, without any associated secondary data structures
such as indexes.

Due to the paramount importance of twig pattern
matching in XML query processing, in this survey, we
focus on reviewing the major techniques for twig pattern
matching. More specifically, we focus on twig pattern
matching over persistently stored (that is, nonstreaming)
XML data.3

An intuitive lightweight way of querying persistently
stored XML data is based on a main-memory-style imple-
mentation, which first loads the entire XML document
from secondary memory into main memory in the form of
a tree and then performs XML queries over this tree. Such
main-memory-style XML query processors include Galax
[37], XMLTaskForce [45], [47], [48], Saxon [70], and so
forth. Although such main-memory-style implementation
is straightforward and feasible for querying small XML
documents, it is typically inefficient for querying large
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XML data in Section 4.3, in which we introduce the Navigational approach
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XML data repositories, since loading the entire XML
documents from secondary memory into main memory,
regardless of the fact that most persistently stored XML
data might be query irrelevant, could cause unnecessarily
high disk I/O cost. For achieving high disk I/O perfor-
mance, which is also one of the core goals of traditional
relational database systems, XML data querying and
management need to evolve from the lightweight main-
memory-style level to a more sophisticated database-style
level.

Motivated by this, in the recent years, significant effort
has been devoted to developing high-performance XML
database systems, in which value indexes and structural
indexes (see Section 2) could be prebuilt on XML data to
improve query processing performance significantly. Spe-
cifically, we categorize major techniques into two classes:
the relational approach (Section 3) and the native approach
(Section 4). The relational approach directly utilizes existing
relational database systems to store and query XML data,
whereas in the native approach, specialized storage and
query processing systems tailored for XML data are
developed from scratch to further improve XML query
performance.

Note that many research papers on XML query proces-
sing assume that queries work on the tree-shaped XML data
model. The first reason for this is that the assumption of the
more general graph-shaped data model increases signifi-
cantly the complexity of XML query processing. The second
reason is that graph-shaped XML documents with ID/
IDREF attributes are not as common in practical applica-
tions as tree-shaped documents. In this survey, we take the
assumption of the tree-shaped XML data model, unless
noted otherwise (for example, in Section 2.2).

2 STRUCTURAL INDEXES ON XML DATA

Generally, indexes prebuilt on XML data can facilitate XML
query processing by locating goal data quickly while
avoiding exhaustive scans of all the data. XML index types
include value indexes (for example, classical B+-tree in-
dexes), which index data values in XML documents, and
structural indexes, which index the structure of XML
documents. In this section, we review two classes of
important structural indexes—numbering schemes and
index graph schemes—which have been used in a number
of XML query processing techniques.

2.1 Numbering Schemes

An important problem in twig pattern matching is
determining structural relationships or, more specifically,
reachability between any two nodes in a data tree. For
example, to determine whether a pair of A-tagged and
B-tagged nodes in a data tree, say, ða; bÞ, matches a path
pattern “A==B,” we need to determine whether there exists
a path from a to b in the data tree.

A straightforward method for determining reachability
is tree navigation (see Lore [81], [82]), which consists of either
traversing down the subtree rooted at an A node to see if
any B node can be found (forward navigation) or back-
tracking from a B node upward to see if any A node can be
found (backward navigation). Backward navigation is more

efficient than forward navigation when B nodes are more
selective (for example, see Fig. 16b). However, the naviga-
tion method is, in general, not very efficient, since it may
involve traversing a large number of query-irrelevant
nodes, that is, nodes tagged with neither A nor B. As we
shall see in Section 4.3, such query-irrelevant nodes may
scatter across a number of disk pages, accessing which may
cause high disk I/O costs.

Another approach to determining reachability is to
precompute transitive closures of data trees (XParent
[64]). However, the sizes of the transitive closures are
typically too large to be used in practice. Thus, it would be
desirable to have a method to compactly represent reach-
ability between pairs of nodes in a data tree. One such
method is numbering schemes.

The work of Dietz [36] is the original work on numbering
schemes for trees. It proposed a numbering scheme that we
will call PrePost coding. It labels each node in a tree with a
pair of numbers, ðpre; postÞ, which correspond to the
preorder and postorder traversal numbers of the node in
the tree. Zhang et al. [124] introduced PrePost coding into
XML applications: it labels each node in an XML data tree
with a pair of numbers ðstart; endÞ, which imply the
position of the opening tag ðh. . .iÞ and the closing tag
ðh= . . .iÞ of the corresponding element of the node in the
XML document. It is easy to see that ðstart; endÞ and
ðpre; postÞ are essentially the same. We illustrate PrePost
coding in Fig. 2a, where each node is adorned with its
ðstart; endÞ numbers. As illustrated in Fig. 2a, the following
property always holds.

Property 1: Ancestor-descendant relationship. Node a is an

ancestor of node b in a data tree if and only if

a:start < b:start < a:end:

In PrePost coding, 1) storing ðstart; endÞ pairs requires
only modest storage space and 2) with the help of
ðstart; endÞ pairs, we can determine the ancestor-descen-
dant relationship between any two nodes in constant time
by using only two number-comparison operations. In
addition, we can test for the parent-child relationship by
extending ðstart; endÞ numbers for each node with another
number level, which is the depth of the node in the tree.

Property 2: Parent-child relationship. In a data tree, node a is

the parent of node b if and only if a:start < b:start < a:end,

and a:levelþ 1 ¼ b:level.

In addition to commonly used “/” and “//” axes,
PrePost coding can be used to process all other axes defined
in XPath (Section 1.2.1) by adding a parent number to the
ðstart; endÞ pair for each node, which denotes the parent ID
for the node [50], [52], [53].

Note that PrePost coding is also called interval coding,
since it labels each node with a pair of numbers, which
could be viewed as an interval, and determines the
reachability between two nodes through checking the
containment relationship between their intervals (Prop-
erty 1). Other interval codings for trees include IndexPost
coding [2] and PreSize coding [74].
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Another well-known numbering scheme for trees is
Dewey coding [10], which was originally developed for
general knowledge classification. Tatarinov et al. [108]
introduced Dewey coding into XML query processing. In
this approach, each node is associated with a vector of
numbers that represents the node-ID path from the root to
the node. In Fig. 2a, the Dewey vectors of node 2 and
node 10 are 1.2 and 1.2.7.10, respectively. Node a is an
ancestor of node b in a data tree if and only if a:vector is a
prefix of b:vector.

An advantage of Dewey coding over PrePost coding is
that Dewey is easier to maintain under dynamic updates on
XML data trees. IBM System RX [7],4 Microsoft SQL Server
[88], and Oracle DB [87] have used Dewey coding in their
XML query processing components: 1) intuitively, when a
new node (or a new subtree) is inserted into a data tree,
only the nodes in the subtrees rooted at the following sibling

nodes of the new node need to update their Dewey vectors.
Furthermore, ORDPATH coding, a simple variant of Dewey
integrated into the Microsoft SQL Server 2005 [88], does not
need to update any ORDPATH vectors under insertions.
2) Maintaining PrePost codes is not as straightforward.
When a new node (or a new subtree) is inserted into a data
tree, all nodes except the nodes in the subtrees rooted at the
previous sibling nodes of the new node need to update their
ðstart; endÞ numbers. To reduce this update cost, more
sophisticated data structures such as W -BOX and B-BOX

proposed by Silberstein et al. [106] have to be built for
efficiently managing ðstart; endÞ numbers.

On the other hand, PrePost coding has its own
advantages over Dewey: 1) ðstart; endÞ pairs require much
less storage space than Dewey vectors and 2) PrePost
provides more efficient support for checking reachability
between two nodes, as the number-comparison operations
are cheaper than checking the prefix-containment relation-
ship between two Dewey vectors. Due to these properties,
PrePost coding has been widely used in research projects in
XML query processing. Most approaches reviewed in
Sections 3 and 4.1 use PrePost coding as their numbering
schemes.

Other ad hoc numbering schemes for trees include
PBiTree coding [115] and Balanced Index-based numbering
scheme for Reconstruction and Decision (BIRD) coding
[118], which require arithmetic operations (for example,
division) to determine relationships between data nodes.

In addition, numbering schemes have also been devel-

oped for DAGs and for more general graphs with cycles,5

which include tree-based coding [2], [57], [111], 2-hop

coding [24], [100], [101], and so forth. Tree-based coding,
originally proposed by Agrawal et al. [2], first finds an

“optimal” spanning tree in a given DAG and labels that tree

by using existing numbering schemes for trees and then

assigns additional labels to nodes to keep track of the

remaining nontree edges in the DAG. 2-hop coding,

originally proposed by Cohen et al. [24], labels each node

with a set of its ancestor nodes Lin and a set of its

descendant nodes Lout. Schenkel et al. [100], [101] intro-

duced 2-hop codings into XML applications. Generally,

numbering schemes for graphs incur much higher storage

space cost and (reachability) query time cost than number-

ing schemes for trees.

2.2 Index Graph Schemes

Index graph schemes, also called “structural summaries” in

some research papers, is another class of important

structural indexes. Its basic idea is compressing an XML

data graph G into a (smaller) index graph GI so that XML

queries can be more efficiently evaluated over GI rather

than over G. Unlike numbering schemes, index graph

schemes are generally applicable to general XML data

graphs. Here, we categorize existing index graph schemes

into two classes—P-indexes and T-indexes—which are able

to cover (linear) path queries and twig queries, respectively.

2.2.1 Index Graphs Covering Path Queries (P-Indexes)

Strong DataGuide, proposed by Goldman and Widom [44], is

an early index graph scheme that summarizes all path

information inG intoGI .GI can be viewed as a deterministic

finite automaton converted from G, which, in turn, can be

viewed as a nondeterministic finite automaton. Note that a

data node in G, for example, node 5 in Fig. 4a, might appear

within more than one index node in GI (see Fig. 4b). In

general, in the worst case, the size of GI using Strong

DataGuides might be exponential in the size of G. However,

Milo and Suciu [84] showed that when G is a tree, Strong

DataGuide reduces to 1-index (to be discussed shortly),

whose size does not exceed the size of G. Weigel et al. [117]

further extended Strong DataGuides to Content-Aware

DataGuides to efficiently process DB+IR-style XML queries

(see Section 1.2.2) by enhancing DataGuides with value
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Fig. 4. From data graph to index graph: An example. (a) Data graph (NFA). (b) Strong DataGuide (DFA). (c) A(1)-index. (d) 1-index (A(2)-index).

(e) F&B index.

4. System RX is an experimental prototype that was implemented as an
extension to IBM DB2 UDB, and its key techniques have recently been
integrated into IBM DB2 9 [59].

5. Note that as He et al. [57] observed, the general graph reachability
problem can be reduced to the DAG reachability problem through
identifying all strongly connected components of a graph.
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indexes (inverted indexes [99]) prebuilt on data values in
XML documents.

In contrast to Strong DataGuides, many other index
graph schemes require each data node to map into exactly
one index node. Specifically, they partition data nodes in G
into equivalence classes by using some partition strategy
and then collect all data nodes in each equivalence class into
an index node. Finally, they create a “tag edge” between
each pair of index nodes ðIA; IBÞ only if there exist two data
nodes a 2 IA and b 2 IB connected by one such tag edge in
G. In these procedures, no data node is mapped into more
than one index node. Therefore, the size of GI never exceeds
the size of G. As a result, incoming XML queries can be
efficiently evaluated over GI to obtain safe or precise query
results. Here, “safe” means that the set of data nodes within
index nodes derived by a query over GI is a superset of the
set of real answer nodes, that is, the data nodes derived by
the query directly over G, whereas “precise” means that the
former nodes are exactly the latter nodes.

Each index graph scheme uses its own data-node
partition strategy. Milo and Suciu [84] introduced 1-index,
which partitions data nodes into equivalence classes based
on their B-bisimilarity (backward bisimilarity [92]): If two
data nodes are B-bisimilar, then they have the same set of
root paths (a root path of a node is a tag path from the root to
this node; see Fig. 4d for an example). Note that when G is a
tree, its 1-index is also a tree. For example, consider a tree-
shaped G, as shown in Fig. 4a, but with edge (2, 5) removed.
A 1-index for G will be a tree similar to that shown in
Fig. 4d, with {5} merged with {6, 8}. Such a tree-shaped
1-index can also be viewed as a trie if we take the viewpoint
of Index Fabric, an index proposed by Cooper et al. [31] for
tree-shaped XML data graphs. Index Fabric views the root
path of each leaf node in a tree-shaped G as a string of
characters, each character corresponding to an edge tag,
and then indexes all these strings into a trie GI . However,
unlike the 1-index, which is basically a main-memory data
structure, Index Fabric further balances and optimizes the
resulting trie for efficient disk access. It has been shown that
1-indexes are precise for all path queries. Unfortunately,
although the size of GI using 1-indexes is at most the size of
its source graph G, in many cases, GI is still too large to be
efficiently used in practice.

To further reduce the size of a 1-index, Kaushik et al. [69]
generalized 1-index to the AðkÞ-index, which partitions data
nodes into equivalence classes based on their k-bisimilarity:
If two data nodes are k-bisimilar, then they have the same
set of incoming k-paths, where k-path is a tag path of length
� k. 1-index is a special case of A(k)-index when k becomes
large enough. An important advantage of the A(k)-index
over the 1-index is that A(k)-index generally has a smaller
size than 1-index, since A(k)-index puts more data nodes
into the same index node. Smaller values of k result in a
smaller index size. However, A(k)-index gains this advan-
tage at the expense of query accuracy: it is precise only for
those p-path queries whose p � k. For p0-path queries whose
p0 > k, it is safe but not necessarily precise. Fig. 4c shows an
A(1)-index. Note that the 1-index in Fig. 4d is also an
A(2)-index. Two index nodes {6, 8} and {9} in Fig. 4d are
merged into one index node {6, 8, 9} in Fig. 4c, since nodes 6,

8, and 9 have the same set of incoming 1-paths fDg.
Although 1-path queries such as “=A” and “==D” are
precise over this A(1)-index, some 2-path queries such as
“=A=D” and “=B=D” are only safe but not precise. For
example, evaluating “=A=D” over this A(1)-index will
return index nodes {5} and {6, 8, 9}, whereas node 9 in G
does not match “=A=D.” Therefore, for p0-path queries, an
extra postvalidation step is required when precise query
results are called for. This step validates the data nodes
derived from GI via rechecking their incoming paths in G
and results in extra computation time. Thus, in practice, it is
very important to select an appropriate value of k. Although
a k that is too small lowers the performance of long-path
queries, a k that is too large may result in significantly
larger indexes and thus may increase the evaluation costs of
both short- and long-path queries.

Chen et al. [13] further generalized A(k)-index to an
adaptive DðkÞ-index, which assigns different k values
(rather than the same k value, as in A(k)-index) to different
index nodes based on a specific query workload. In
particular, it assigns small k values to tag names that
usually appear in short-path queries and large k values to
tag names that usually appear in long-path queries, which
makes the resulting D(k)-index both (index) space- and
(query) time-efficient for the given query workload.
Further, two procedures, “promotion” and “demotion,”
were developed in [13] to periodically tune the k values of
index nodes to make D(k)-index adaptive to incrementally
changing query workloads. Adaptive Path indEX for XML
data (APEX), proposed by Chung et al. [23], is another
adaptive index graph scheme, whose motivation and
function are similar to those of D(k)-index. In particular, a
hash tree index HAPEX was developed in [23] to efficiently
retrieve (answer) index nodes from the APEX index graph
when path queries are given. A further improvement of
D(k)-index is due to the work of He and Yang [58], in which
two sophisticated indexes, M(k)-index and M�ðkÞ-index,
were developed to avoid “overrefinement,” which creates
for some index nodes unnecessarily large k values that are
irrelevant to frequent queries.

2.2.2 Index Graphs Covering Twig Queries (T-Indexes)

P-indexes cover (linear) path queries only. Answering
general twig queries requires an additional path-joining step
on the data nodes returned by path queries over the P-index
graph, as discussed in Section 4.1.4. For example, ToXin [98]
uses DataGuide as its path index and then implements path
joining by using the Edge approach (see Section 3.1). To
avoid such path joining, some projects have focused on
developing T-indexes, which can directly cover general
twig queries while generally having larger index size than
P-indexes.

The F&B-index, proposed by Abiteboul et al. [1],
partitions data nodes into equivalence classes based on
their F&B-bisimilarity (forward and backward bisimilarity
[92]). Unlike B-bisimilarity in 1-index, F&B-bisimilarity
depends not only on incoming (backward) paths but also
on outgoing (forward) paths of data nodes. Thus, {1, 2, 3} in
Fig. 4d is split into two index nodes, {1} and {2, 3}, in Fig. 4e,
since the outgoing paths of node 1 are different from those
of nodes 2 and 3 (see Fig. 4a). As a result, the precise query
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answer {2, 3} to the twig query “=A½=C AND =D�” can be

obtained directly from the F&B-index in Fig. 4e but not from

the 1-index in Fig. 4d. Kaushik et al. [67] showed that the

F&B-index is the smallest index that can cover all twig

queries. Unfortunately, the size of the F&B-index is usually

unacceptably large. Motivated by this, Kaushik et al. [67]

developed a flexible ðFþ BÞi-index that can cover only a

subclass of twig queries but has a smaller index size than

the F&B-index. The value of i is used for tuning the trade-

off between index size and query answering power. With a

smaller i value, ðFþ BÞi-index has a smaller size but can

only cover a smaller subclass of twig queries. Theoretical

results by Ramanan [96] show that when twig queries do

not include the NOT operator, an index built by partitioning

data nodes based on F&B-similarity [83] rather than on

F&B-bisimilarity is the smallest index that can cover such

twig queries. It is never larger (and is exponentially smaller

in some cases) than the F&B-index. Recently, Wang et al.

[116] developed a disk-based F&B-index to efficiently deal

with those cases where the F&B-index is too large to fit in

memory.

2.2.3 Summary on Index Graph Schemes

From the above discussion, we can see that index graph

schemes have evolved from P-indexes covering only path

queries to larger-sized T-indexes covering general twig

queries. Further, both P-indexes and T-indexes have under-

gone the development from precise indexes with potentially

large sizes such as 1-index in P-indexes and F&B-index in

T-indexes to safe-only indexes with smaller sizes such as

A(k), D(k), M(k), and APEX indexes in P-indexes and ðFþ
BÞi-index in T-indexes. No single index graph scheme

dominates the others, since there is always a trade-off

between index size and query answering power. As

observed earlier for A(k)-index, although safe-only indexes

have smaller index sizes, they require an extra expensive

postvalidation step to obtain precise query results when

queries are beyond their covering range.

2.3 Summary

Numbering schemes and index graph schemes are not just

two independent and exclusive tools for indexing the

structure of XML data. In Section 4.1.4, we will see that

they play different roles in answering XML queries: index

graph schemes are used for path selection, and numbering

schemes are for path joining. They could be used together to

improve query processing performance.

3 XML QUERY PROCESSING: THE RELATIONAL

APPROACH

Many of today’s commercial database systems are relational
database management systems (RDBMSs), and examples
include IBM DB2, Microsoft SQL Server, and Oracle DB. For
more than 30 years of academic and industrial efforts,
RDBMSs have acquired strong capabilities in storage
management, query processing and optimization, and
concurrency control and recovery. Motivated by this fact,
a number of research projects have addressed storing and
querying XML data in RDBMSs.

3.1 The Edge Approach

3.1.1 The Basic Edge Approach

Florescu and Kossmann [41] proposed a simple approach to
shredding XML data into relations. This approach places all
edges in an edge-labeled XML data tree into a single
relational table Edge, whose schema is shown in Fig. 5a
(the table in Fig. 5a is populated with the XML data of
Fig. 2b). The key idea here is using an attribute pair
ðSource; TargetÞ, which represents the two end points of
each edge. Label represents the tag on an edge, whereas Flag
and V alue give the type and value, respectively, of the target
node of an edge.

Two edges A and B can be joined together if and only if
A:Target ¼ B:Source. Based on this property, it is easy to
transform XML queries without “//” axes into SQL queries,
as illustrated in Fig. 6a. Evaluation of such SQL queries
comprises two main steps. The first step is edge selection
(part 1), which retrieves the data edges for each label in the
query. A clustered index prebuilt on Label can significantly
speed up processing in this step. In addition, an index
prebuilt on the V alue attribute can help efficiently retrieve
some data edges, for example, the address edges with the
“Cambridge” value, as shown in Fig. 6. The second step is
edge joining (part 2), which joins adjacent data edges
retrieved in part 1. This step can be done in a more efficient
way by using prebuilt indexes on ðSource; TargetÞ.

3.1.2 The Binary Approach

Executing part 1 of the basic Edge approach can be avoided
by using the Binary approach proposed by Florescu and
Kossmann [41], which pregroups all edges in the Edge table
by their Labels and creates one table for each distinct Label.
Each table has the schema ðSource; Target; F lag; V alueÞ,
with Label dropped from the Edge schema. An example is
shown in Fig. 6b, in which the edge-selection operations of
part 1 of Fig. 6a are not performed. In addition to improving
query performance, the Binary approach also saves storage
space, since the Label attribute is not stored.
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Fig. 5. Examples of (a) an edge table and (b) a node table.
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The Edge approach has the following limitations: 1) It
involves a number of join operations. The number of joins is
the number of query nodes in a twig query (minus 1). Thus,
the approach may fail to process large twig queries
efficiently. 2) It may fail to process queries with “//” axes
(for example, “A==B”) efficiently because it is hard to
determine the number or names of the tags between A and
B. For determining the ancestor-descendant relationships
between data nodes, it needs to partially compute transitive
closures of data trees by issuing expensive recursive SQL
queries [40]. Precomputing and materializing transitive
closures (XParent [64]) can avoid such expensive computa-
tion but may incur very high storage-space costs.

3.2 The Node Approach

As introduced in Section 2.1, a class of important
structural indexes called numbering schemes may help
answer “//”-axis queries efficiently. Zhang et al. [124]
developed a Node approach, in which all internal nodes
(that is, the element and attribute nodes) in a node-labeled
XML data tree are stored in a relational table Node, whose
schema is shown in Fig. 5b and which is populated with
the XML data in Fig. 2a. The key idea here is using the
attribute triple ðStart; End; LevelÞ. “//”-axis queries can be
answered efficiently by using the ðStart; EndÞ pairs. Level
is used along with ðStart; EndÞ to answer “/”-axis queries.

Based on Properties 1 and 2 in Section 2.1, it is easy to
transform queries with both “/” and “//” axes into SQL
queries, as illustrated in Fig. 7. Similar to the Edge
approach, evaluation of the SQL queries consists of two
steps: node selection (part 1) and node joining (part 2).

Part 2 joins the data nodes retrieved by part 1 via their

ðStart; End; LevelÞ numbers. Just as in the Edge approach,

executing part 1 can be avoided in the Node approach by

using a modification similar to that in the Binary approach.
Unlike the Edge approach, the Node approach does

support “//”-axis queries efficiently. However, similar to

the Edge approach, it may involve a number of join

operations, which may impact the processing perfor-

mance of large twig queries. Specifically, the number of

required joins is the number of query nodes in a twig

query (minus 1).

3.3 The Path Materialization (PM) Approach

3.3.1 The Basic PM Approach

To reduce the number of node joins, Yoshikawa et al. [123]

proposed a PM approach, in which internal nodes in a

node-labeled XML data tree are stored in a relational table

Path, whose schema is shown in Fig. 9a and which is

populated with the XML data in Fig. 2a. The Path table is

very similar to the Node table. The difference is that rather

than storing the tag of each node in the Label attribute, the

PM approach stores the tag path from the root to each node

(called root path) in a Path attribute.
Using the Path attribute, the PM approach can answer

twig queries efficiently in units of paths rather than in units

of edges. Specifically, given a twig query, the PM approach

first decomposes it into multiple root-to-leaf path queries

and then joins the results of the path queries, as illustrated

in Fig. 8. Evaluation of the SQL queries consists of two main

steps: path selection (part 1) and path joining (part 2). Part 1

uses the root paths of the leaf nodes (address and name) and

of the branching nodes ðpublisherÞ in the query twig to

retrieve the corresponding data nodes from the data tree.
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Fig. 6. The Edge approach: SQL query for “=publisher½address ¼ ‘‘Cambridge’’�=book=author=name.” (a) The basic edge approach. (b) The binary

approach.

Fig. 7. The Node approach: SQL query for “/publisher[address =

“Cambridge”]//author/name.”

Fig. 8. The basic PM approach: SQL query for “/publisher[address =

“Cambridge”]/book/author/name.”
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Part 2 joins the data nodes retrieved by part 1 via their
ðStart; End; LevelÞ numbers.

We note two features of the PM approach: 1) It involves
fewer join operations in part 2 than the Node approach
because PM answers twig queries in units of paths rather
than in units of edges. In the example in Fig. 8, the Node
approach would need to join five query nodes, whereas the
PM approach needs to join only three query nodes.
2) Similar to the Node approach, the PM approach can
support “//”-axis queries by using the Optional String
Pattern Matching (OSPM) function (“LIKE”) provided by
SQL. For example, to answer query “=publisher==name,”
we can use “name.Path LIKE “=publisher%name.””

Besides XRel [123], XParent [64] and MonetDB [102] also
employ PM-like approaches, which have the same imple-
mentation for part 1 but differ in the implementation of
part 2. XParent [64] designs a Path þ Edge table, which
replaces ðStart; End; LevelÞ in Fig. 9a with ðSource; TargetÞ,
as in the Edge approach. To efficiently implement part 2
when “//” axes are involved, all ðdescendant; ancestorÞ
node pairs in the data tree are precomputed and stored in a
separate Ancestor table, which may result in high storage-
space costs. MonetDB [102] pregroups all edges in the Path
þ Edge table by their Paths and creates one table for each
distinct Path (rather than one table for each distinct Label,
as in the Binary approach). Without the materialized
Ancestor table as in XParent, its implementation for part 2
has limitations similar to those of the Edge approach when
processing “//” axes.

Although the PM approach reduces the number of joins
in part 2, it does so at the expense of increasing the
complexity of the selection operation in part 1. It is known
that SQL can support exact string pattern matching (“=”)
efficiently through prebuilt B+-tree indexes on strings.
However, B+-tree indexes cannot support “LIKE” efficiently

(to find patterns with multiple “%”’s, a large number of
irrelevant strings might have to be exhaustively scanned).
Therefore, PM may not support efficiently queries with
multiple “//” axes.

Another limitation of PM is that it might result in
incorrect query answers when recursion (Section 1.1) exists
in XML data. Consider a path query “==A½=B==C�” over a
recursive data path “a1�b1�a2�c1.” Although only a1

should be in the query result, PM returns both a1 and a2,
since path selection using “%A” returns fa1; a2g, path
selection using “%A=B%C” returns fc1g, and path joining
between fa1; a2g and fc1g returns fa1; a2g.

3.3.2 The Reversed-Path (RP) Approach

Pal et al. [90] proposed an RP approach, which overcomes
the main drawback of the PM approach. The RP approach
uses the relation schema shown in Fig. 9b. The key idea of
RP is storing reversed root paths of data nodes in a
ReversedPath attribute. In addition, RP in [90] uses an
ORDPATH attribute instead of the ðStart; End; LevelÞ
attributes of the PM approach. ORDPATH coding [88] is
a variant of the Dewey coding (see Section 2.1). Similar to
PrePost coding, it can be used to determine reachability
between nodes. In the discussion below, we focus on the
ReversedPath attribute.

Fig. 10a illustrates how the RP approach answers twig
queries with multiple “//” axes. The first step is path
selection: The query twig is first decomposed into three
paths, as in the basic PM approach. Path 3 involves three
“//” axes. The basic PM uses “%A=B=C%E=F%G” as a
search pattern on the Path attribute to retrieve the
corresponding data nodes. As discussed earlier, it is not
straightforward to implement efficiently this type of
pattern matching. The RP approach further decomposes
path 3 into path 4 and path 5, each of which includes only
one “//” axis and only in the beginning. Thus, we can
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Fig. 9. Examples of (a) a Path table and (b) a ReversedPath table.

Fig. 10. (a) The RP approach and (b) the BLAS approach: PLabel ð00=p2=p3=p1=p400Þ ¼ 396.
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use “=F=E%” and “=G%” as search patterns on the

ReversedPath attribute. The goal here is to find strings

with a specified prefix, which can be implemented more

efficiently than the “LIKE” matching with multiple “%”

symbols. In the final path-joining step, the RP approach

joins the results of the path queries by using the

ORDPATH attribute.
The RP approach always returns correct query results,

even in the presence of recursion in XML data, since each

path generated by its path-decomposition procedure in-

cludes only one “//” axis and only in the beginning.

Consider the example that we used in the basic PM

approach, in which a path query “==A½=B==C�” is issued

over a recursive data path “a1�b1�a2�c1.” RP returns the

correct query result fa1g because it uses three path

selections, “=A%,” “=B=A%,” and “=C%,” rather than only

two path selections, “%A” and “%A=B%C,” as in the basic

PM approach.
The RP approach has been integrated into IBM System RX

[7], Microsoft SQL Server 2005 [88], [90], and Oracle DB [87]

and was also independently proposed by Chen et al. [19].

3.3.3 The BLAS Approach

As we have seen, the RP approach reduces general-purpose

“LIKE” matching to the easier task of string prefix matching

(SPM). However, [7], [19], [87], and [90] do not discuss

efficient implementations of SPM. It seems that SPM is

simply pushed down to the SQL engine. Chen et al. [16], in

addition to discovering RP independently, proposed a

sophisticated BLAS approach to implementing SPM effi-

ciently. The schema of the BLAS table is given as follows:

The key idea of BLAS is encoding each ReversedPath

string into a PLabel value. This encoding is a variant of

the reversed arithmetic encoding developed by Min et al.

(XPRESS [85]), and we give an illustration in Fig. 10b. In

the example, we assume that our XML document has a

total of four distinct tag names, p1 through p4. At the

first level, these four tags divide the reserved number

space [0, 1,024) into four equal-length segments, each

with length 1; 024=4 ¼ 256. Similarly, at the second level,

four tags divide each first-level segment into four equal-

length segments of length 256=4 ¼ 64 each, and so on.

Then, we have

PLabelð 00=p2=p3=p1=p
00
4Þ

¼ 256 � ð2� 1Þ þ 64 � ð3� 1Þ þ 16 � ð1� 1Þ þ 4 � ð4� 1Þ
¼ 396:

A nice property of PLabel is that all strings with common
prefixes are clustered in adjacent positions in the PLabel
number space. Thus, all ReversedPath strings with a
specified prefix can be retrieved efficiently through an
SQL range query if a clustered B+-tree index has been
prebuilt on the PLabel attribute in the BLAS table. For
example, to retrieve all reversed paths with prefix
“=p2=p3=,” BLAS computes lower boundð 00=p2=p3=

00Þ ¼
PLabelð 00=p2=p3=

00Þ ¼ 384 and upper boundð 00=p2=p3=
00Þ ¼

PLabelð 00=p2=p4=
00Þ ¼ 448 and then issues an SQL range

query to retrieve all reversed paths with PLabel within
[384, 448). Fig. 12 illustrates this idea. Path selection in
part 1 is implemented efficiently using SQL range queries,
whereas part 2 joins the data nodes retrieved in part 1
through their ðStart; End; LevelÞ numbers.

3.4 The DTD Approach

All the above approaches address storing and querying
general (schemaless) XML data. In many practical applica-
tions, XML data also conform to a “schema” to some extent
because a common agreement on the schemas of the data
would facilitate significantly the data exchange among
various applications. Such schema information provides
extra opportunities for more compact storage and more
efficient querying of XML data [109]. The DTD approach
that we review in this section utilizes such crucial schema
information.

XML schemas can be described using DTDs [26], [21] or
XML-Schemas [29], which are essentially extensions to
DTDs. We now briefly introduce basic issues of DTDs only.
A DTD is a set of statements that specify 1) relationships
between XML elements and their subelements or attributes
and 2) the data type of XML elements or attributes. Fig. 11a
gives an example of a DTD document, whose semantics can
be explained using the DTD tree in Fig. 11b. The “�” symbol
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Fig. 11. A DTD and its relational schema. (a) A DTD document. (b) A DTD tree. (c) Relational schema.

Fig. 12. The BLAS approach: SQL for the twig query in Fig. 10a.
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associated with an element in a DTD implies that multiple
copies of the element can be present under its parent
element. For example, a publisher element might have
multiple book subelements.

Unlike the schemaless approaches (such as Edge, Node,
and PM), which generate the same relational schema (tables
Edge, Node, Path, and so forth) for all types of XML data,
regardless of their structure, the DTD approach generates
different relational schemas for different DTDs [104], [105].
Consider the example in Fig. 11c, where relations are created
for the root element ðpublisherÞ and for all �-elements (book
and author). Each relation has an id attribute as its key, and
each �-element relation has a parent id attribute, which is a
foreign-key reference to its parent-element table. Note that
ðid; parent idÞ in each �-element relation represents an edge,
similar to ðSource; TargetÞ in the Edge table.

The DTD approach transforms XML queries into SQL
queries based on the schema information in the DTD tree:
1) For a “/”-axis join A=B, it first checks whether A is the
parent of B in the DTD tree. If not, then A=B is an invalid
query. Otherwise, relations A and B are joined using
A:id ¼ B:parent id, similar to A:Target ¼ B:Source in the
Edge approach. Fig. 13 gives an example. 2) For a “//”-axis
join A==B, it first checks whether A is an ancestor of B in the
DTD tree. If not, then A==B is an invalid query. Otherwise,
relations A and B and all relations between them (which can
be found in the DTD tree) are joined using the “/”-axis join
above. For instance, the SQL query in Fig. 13 also works
for “=publisher½address ¼ 00Cambridge00�==author=name” be-
cause the DTD tree in Fig. 11b implies that only book can
appear between publisher and author. Note that for either
A/B or A//B, the join operation between relations A and B
can be avoided if B has been inlined into relation A as an
attribute rather than being stored independently as a
relation, as we shall see shortly.

Compared to the schemaless approaches, the DTD
approach could reduce the number of joins significantly,
for the following reasons: 1) the non-� elements in DTDs,
for example, address and name in Fig. 11, have been
inlined into the �-element relations as attributes and can
be retrieved using the projection or selection operators
rather than more expensive joins. For example, for query
“=publisher½address ¼ 00Cambridge00�=@name,” an SQL so-
lution is

SELECT Publisher:name FROM Publisher

WHERE Publisher:address ¼ 00Cambridge:00

Note that this SQL solution does not require any joins,
whereas the schemaless approaches would require two
joins. 2) The DTD approach does not require joins for
some existence-test query nodes. For example, for query

“=publisher½address�=book½title ¼ 00Databases00�,” an SQL so-
lution is

SELECT Book:id FROM Book

WHERE Book:title ¼ 00Databases:00

That is, publisher does not need to be joined with address or
book, since the DTD tree implies that each book node must
have a publisher parent, which must have an address child.

On the other hand, the DTD approach might involve
more joins than the Node or PM approaches, since it
transforms each “//”-axis join into a series of “/”-axis joins.
However, as noted by Krishnamurthy et al. [72], this
inefficiency could be alleviated by augmenting the DTD
approach with numbering schemes, as in the Node and PM
approaches, that is, by introducing the ðStart; End; LevelÞ
attributes into relations. For instance, when the Publisher
and Author relations in Fig. 11c are augmented this way,
answering

00=publisher½address ¼ 00Cambridge00�==author=name00

requires only one join (between the Publisher and Author
relations) rather than two joins, as in Fig. 13.

From the above, we can see that by using the schema
information in DTDs, the DTD approach could generally
have better performance than the schemaless approaches, in
particular when the number of “//”-axes in queries is small
or when the DTD approach is augmented with numbering
schemes.

Note that in the above, we consider only tree-shaped
DTDs. In practice, DTDs can be DAGs or even general
graphs with cycles, even for tree-shaped XML data: 1) a
DAG-shaped DTD graph may be caused by some node in
the DTD graph having more than one parent node. For
example, a book node in a DTD graph might have not only a
publisher parent node, as in the DTD tree in Fig. 11b, but
also a vendor parent node; that is, both the publisher and
vendor data elements might have book subelements. In such
cases, we need to create two Book relations: one storing all
book elements whose parents are publisher elements and
having its parent id attribute refer to the Publisher relation
and another storing all book elements whose parents are
vendor elements and having its parent id attribute refer to
the V endor relation. Note that the book elements stored in
these two Book relations are disjoint, since each (nonroot)
data element in a tree-shaped XML document has exactly
one parent element. For a query “==vendor=book,” the
V endor relation is joined with the second Book relation
only. 2) A DTD graph with cycles may be caused by
recursion in XML data. For example, multiple pairs of
ðbook; authorÞ data nodes might be nested on the same path
in a data tree. In such cases, the DTD graph has not only an
edge from the book node to the author node, as in the DTD
tree in Fig. 11b, but also another edge from the author node
back to the book node, which forms a cycle in the DTD
graph. Due to this backward edge, the book node in Fig. 11b
now has two “parents”: publisher and author. Thus, as in
the DAG case, we need to create two Book relations: one
storing all book elements whose parents are publisher
elements and having its parent id attribute refer to the
Publisher relation and another storing all book elements
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Fig. 13. The DTD approach: SQL query for “/publisher[address

“Cambridge”]/book/author/name” (and also for “/publisher[address

=“Cambridge”]//author/name”).
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whose parents are author elements and having its parent id
attribute refer to the Author relation. For a query
“==book½title ¼ 00Databases00�==author,” after all book ele-
ments with title “Databases” have been selected, a recursive
SQL query over these selected book elements, the second
Book relation, and the Author relation is needed for
computing the ðauthorÞ transitive closure of these selected
book elements, as in the Edge approach, since the axis of
author in the query is “//.” Using recursive SQL queries
can be avoided when the DTD approach is augmented with
numbering schemes, as discussed earlier in this section.

A more detailed overview of the state of the art and of
open problems of the DTD approach can be found in [72].

3.5 Summary

The relational approach stores XML data in relational
databases and transforms twig queries over XML data into
SQL queries over relational data. In this approach, all
query processing and optimization efforts can be pushed
into the relational query optimizer. We note that 1) when
XML data are schemaless, the PM approach has advan-
tages over the Edge and Node approaches because PM
a) supports “//”-axis queries efficiently and b) may
require fewer join operations. Furthermore, among the
three versions of PM, BLAS (being an extension of the
basic RP approach with PLabeling) appears to be the best
in terms of query processing performance. The basic RP
approach has been integrated into IBM System RX [7],
Microsoft SQL Server 2005 [88], [90], and Oracle DB [87].
2) Also, when XML data conform to a schema, the DTD
approach could generally have better performance than
other schemaless approaches.

4 XML QUERY PROCESSING: THE NATIVE

APPROACH

Although the relational approach is simple and straightfor-
ward to implement, it may not exhibit optimal query
processing performance. To answer “//”-axis queries
efficiently, the Node and PM approaches use �-joins6 to
implement node/path-joining (see part 2 in Figs. 7, 8, and
12) while discarding equijoins used in the Edge approach
(see part 2 in Figs. 6 and 13). �-joins are more complex and
expensive than equijoins. Although state-of-the-art
RDBMSs have been coupled with efficient techniques for
processing equijoins, they typically do not support �-joins

efficiently, in particular when queries involve multiple
inequality-comparison predicates. The experimental work
by Zhang et al. [124] has verified this point. Motivated by
this, many native techniques have been developed to query
XML data efficiently. We call these techniques native

approaches, since their query processing (and, perhaps, also
storage) mechanisms are developed from scratch, without
involving relational databases. Native approaches are
driven by the belief that a storage and query processing
system specifically tailored for XML data will improve XML
query performance significantly.

4.1 The Join Approach

In this section, we review the Join approach, a very
important native approach, which implements efficiently
�-joins involved in XML twig queries (such �-joins are also
called “structural joins” in many research papers). In this
approach, XML data are stored in inverted lists. The
concept of inverted lists originates from inverted indexes,
which have been widely used in IR to implement text search
efficiently [99]. An inverted list is created for each distinct
tag in XML documents, and each list records the positions
of all elements with that tag name, where the position of an
element is expressed using its ðStart; End; LevelÞ numbers
(or Dewey vectors [79], [122]). Elements in each list are
sorted in the increasing order of their start numbers. The
following illustrates inverted lists for Fig. 2a:

We can see that inverted lists here are essentially the same
as the Node table in the relational approach (see Fig. 5b),
provided that all nodes in the Node table are pregrouped by
their Labels, as in the Binary approach (Section 3.1). This
implies that the Join approach could utilize relational storage
for XML data while providing different query processing
techniques than existing RDBMSs.

4.1.1 The Multi-Predicate MerGe JoiN (MPMGJN)

Approach

Zhang et al. [124] proposed an MPMGJN algorithm, whose
implementation is somewhat similar to the classical merge-
join algorithm developed in relational query optimizers for
equijoins. To answer a query “A==B” or “A=B,” first, two
cursors are created to point to the heads of listA and listB,
respectively. Then, the two cursors are compared with each
other and are advanced as needed to implement the merge
join. In contrast to the standard merge-join implementation
for equijoins, MPMGJN has its own cursor advancing
mechanism, which is tailored to efficiently support struc-
tural joins. Specifically, at each step, it compares and
advances two cursors, as shown in Fig. 14. As illustrated in
Figs. 15a and 15b, the inner loop join at ai corresponds to a
range scan ðai:start; ai:endÞ over listB. The experimental
work in [124] shows that for many XML queries, MPMGJN
is more than an order-of-magnitude faster than current
RDBMS join implementations. In XML Indexing and
Storage System (XISS) [74], Li and Moon independently
developed another merge-join algorithm ""-Join, which is
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6. �-joins are joins involving “> ” or “< ” comparisons, whereas equijoins
involve only “¼ ”comparisons.

Fig. 14. Core of the MPMGJN algorithm.
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similar to MPMGJN but uses PreSize coding, another type
of interval coding (Section 2.1), rather than PrePost coding.

Zhang et al. [124] observed that the inner loop join at ai
in MPMGJN can also be implemented by issuing a range
query ðai:start; ai:endÞ to probe a B+-tree index prebuilt on
the start numbers of listB. Such index-probe operation lays
a foundation for index nested-loop join (INLJ) algorithms,
for example, the INLJ algorithm proposed by Moro et al.
[86] and the Staircase Join algorithm proposed by Grust
et al. [50], [52], [53]. If the A nodes are very selective (see
Fig. 16a), then an INLJ algorithm can outperform MPMGJN,
as it does not need to sequentially read listB. However, as
reported in the experimental work in [124], the INLJ
algorithm may be inferior to MPMGJN in other cases, since
it may incur significant random disk I/O costs due to the
index-probe operation at each A node.

4.1.2 The StackTree Approach

Al-Khalifa et al. [3] observed that MPMGJN fails to process
“/”-axis queries efficiently in some cases. A motivating
example is shown in Fig. 15b. In the example, a1 has only
two B children: b1 and b6. However, in MPMGJN, the inner
loop join at a1 also visits unnecessarily b2 through b5, which
are proper descendants but not children of a1.

Al-Khalifa et al. [3] proposed a StackTree approach that
can avoid such visiting of unnecessary nodes. StackTree
uses a stack structure to cache those A nodes that are nested
on the same path in data trees. Fig. 17 shows the core of the
StackTree algorithm. At each step, the data node with the
smallest start number is taken out of its list. If it is an
A-tagged node, then it is pushed into the stack. If it is a
B-tagged node, then StackTree tries to use it to form tuple
solutions with A-tagged nodes in the current stack. Fig. 15c
illustrates this process, in which b3 is compared with a3 only
(step 6) rather than with a1 through a3, as in Fig. 15b.
Generally, StackTree shows better query processing perfor-
mance than MPMGJN [3].

Join order. Both StackTree and MPMGJN are binary-join
algorithms; that is, they join only a pair of inverted lists
(that is, only two nodes in the query twig) at a time. Since a
complete twig query consists of a series of binary joins, and
different join orders result in different sizes of intermediate
join results, the join order has a significant impact on XML
query processing performance. Similar to the context of
relational databases, where many query optimizers use the
classical cost-based dynamic-programming method [103] to
select an optimal join order, Wu et al. [120] proposed cost-
based dynamic-programming methods for selecting an
optimal or near-optimal order of binary structural joins
for XML twig queries, in which the sizes of intermediate
join results are estimated using the histogram techniques
proposed in [119]. The StackTree join algorithm and its
corresponding join-order-selection algorithms based on
dynamic programming have been integrated into Tree-
structured native XML database Implemented at the
University of Michigan by Bright Energetic Researchers
(TIMBER) [60].

Output order. Another important issue is that the
StackTree algorithm in Fig. 17 outputs all tuple solutions in
the increasing order of start numbers of descendant nodes
(that is, of B-tagged nodes). For example, six tuple solutions
in Fig. 15c are output in the order b1 through b6. In [3], Al-
Khalifa et al. also proposed a variant of the StackTree
algorithm that outputs tuple solutions in the increasing order
of start numbers of ancestor nodes (that is, ofA-tagged nodes)
by temporarily delaying the output of some tuple solutions
that have been found. One such variant is essential for
processing twig queries. Consider, for instance, query
“A==B==C.” If we select a query plan A ffl ðB ffl CÞ, then
the results of B ffl C have to be sorted by B nodes before
performing the binary join between A and B.

Skip: no need to sequentially read the entire inverted
list. Chien et al. [20] extended the StackTree algorithm
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Fig. 15. Applying MPMGJN and StackTree to query “A=B.” (a) Data tree. (b) The MPMGJN approach. (c) The StackTree approach.

Fig. 16. Skip: no need for sequential reads. (a) A==B: skip descendants. (b) A==B: skip ancestors. (c) A==B==C: fixing the broken query edge (B. C)

first.
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with a “skip” technique, based mainly on a prebuilt B+-
tree index on the start numbers of inverted lists, to avoid
sequential reads on all data nodes in inverted lists during
joins. This might reduce the disk-read costs significantly,
since in practice, many data nodes might not form final
tuple solutions with other nodes. During the querying
process, skip-descendant is used when cursorB falls behind
cursorA. In Fig. 16a, cursorB skips from b1 to bi by probing
the B+-tree index on listB by using a1:start to get the first
B-node whose start is larger than a1:start. Similarly, skip-
ancestor is used when cursorA falls behind cursorB.
Intuitively, in Fig. 16b, cursorA should skip from a1 to
ai, where ai is the first ancestor of b1. However, the skip-
ancestor technique proposed in [20] can only skip from a1

to ak by probing the B+-tree index on listA by using
a1:end to get the first A-node whose start is larger than
a1:end. To further improve the efficiency of skipping, that
is, to skip directly from a1 to ai, Jiang et al. [63] proposed
XR-tree indexes rather than regular B+-tree indexes on
inverted lists. An XR-tree is basically a B+-tree with all
nodes in an inverted list stored in its leaf (data) pages,
whereas its internal (index) pages are associated with
special stab lists, recording the ancestor nodes of the
corresponding nodes in its leaf (data) pages. With such
stab lists, the first ancestor node ai of b1 can be efficiently
retrieved by probing the XR-tree using b1:start. Another
variant of B+-tree XB-tree [9] is also able to search
ancestors efficiently. In an XB-tree, each key Ki in an
internal (index) page P is a preassigned interval
ðKi:start;Ki:endÞ that contains all preassigned intervals
in Ki:page, a child page of P . Experimental work by Li
et al. [73] reported that for highly recursive XML data,
XB-trees have smaller index size and update cost, as well
as better ancestor-searching performance, than XR-trees.

Note that INLJs (Section 4.1.1) can be viewed as a skip
technique that skips descendants only (or ancestors only
[86]), whereas the skip technique outlined here interleaves
ancestor-skip and descendant-skip in a flexible manner
throughout the querying process based on the position of
cursorA and cursorB and, thus, generally has better
performance.

4.1.3 The Holistic Approach

StackTree and MPMGJN have to decompose twig queries
into multiple binary joins, which might generate a large
volume of intermediate query results. For example, for a
query plan ðA ffl BÞ ffl C, the result of A ffl B has to be
written to disk if its size is too large to fit in memory and
then has to be read back to memory to join with C after
A ffl B has been computed. This may result in high disk I/O

costs. Motivated by this observation, Bruno et al. [9]
proposed a Holistic approach, whose key idea is pipelining,
that is, joining multiple inverted lists at a time to avoid
generating intermediate join results.

The PathStack approach. The Holistic approach to
answering (linear) path queries is a PathStack algorithm
[9], whose core is shown in Fig. 18. The framework of the
algorithm is somewhat similar to that of StackTree in
Fig. 17. The difference is that StackTree uses only one stack
to cache nested A nodes. In contrast, PathStack has multiple
stacks, one for each node in a path query. In addition, each
data node cached in a stack has an associated pointer to a
corresponding node in its parent stack in order to track
tuple solutions. For an illustration, see Fig. 19.

The TwigStack approach. The Holistic approach to
answering general twig queries is a TwigStack algorithm
[9], which includes two steps: 1) deriving path solutions (that
is, the twig query is decomposed into multiple root-to-leaf
path queries, and the solutions to these path queries are
then derived from the data tree) and 2) joining path solutions

(that is, the resulting path solutions are then joined to get
the final twig solutions).

A simple method for implementing step 1 is to process
each path query separately by using PathStack. However,
this naive method is generally not efficient, since it might
return many redundant path solutions such as ða1; d1Þ
(satisfying the path query “==A==D”) in Fig. 20, which do
not contribute to any final twig solutions. To reduce the
number of such redundant path solutions, the TwigStack
algorithm introduced an additional function q ¼ getNextðÞ.
q ¼ getNextðÞ returns a query node q such that q has a

subtwig solution, but its parent node does not (we say that
a query node q has a subtwig solution if given the (query)
subtwig rooted at q with all “/” axes replaced by “//” axes,
denoted Tq, the cursor (head) nodes of the inverted lists of
all query nodes in Tq form a match for Tq). At each step,
only cursorq qualifies for being pushed into the stack.
Fig. 20 shows an example. Initially, getNextðÞ advances
cursorA through a1 to a2 because a1:end < b1:start (thus, a1

cannot contribute to any final twig solution). Then, at
step 1, B has a subtwig solution at b1, and D has a (trivial)
subtwig solution at d1, but B’s and D’s parent A does not
have a subtwig solution at a2 because ða2; b1; c1; d1Þ does not
form a match for TA. Therefore, we have getNextðÞ ¼ D
(getNextðÞ 6¼ B because d1:start < b1:start), and thus, d1 is
streamed out of listD. However, d1 is not pushed into stack
D at step 2, since its parent stack A is empty. This way, the
redundant path solution ða1; d1Þ is avoided.
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Fig. 18. Core of the PathStack algorithm.
Fig. 17. Core of the StackTree algorithm.
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Experimental results in [9] show that TwigStack typically
has higher query processing performance than StackTree
coupled with the optimal join order. Due to these
performance advantages, TwigStack has been extended
extensively in recent research:

Optimality: no redundant path solutions. In general,
TwigStack might still generate redundant path solutions,
although it does reduce the number of such solutions
compared to the naive method of processing each path
query separately by using PathStack. Bruno et al. [9] pointed
out that TwigStack is optimal for twig queries with “//”
axes only. For instance, in Fig. 20, if we change the “//”-axis
between A and D to a “/”-axis, then the ða2; b1; c1Þ output at
step 6 becomes a redundant path solution. However,
TwigStack still has to output it as a path solution because
at the time of step 6, through checking cursorD only,
TwigStack cannot determine whether a2 has any D children
after cursorD ¼ d2. Further, Choi et al. [22] showed that any
version of TwigStack that sequentially reads inverted lists
only once cannot be optimal for twig queries with arbitrarily
mixed “//” and “/” axes. Therefore, research efforts have
focused on achieving optimality for some special subclasses
of twig queries. Lu et al. [78] proposed a variant of
TwigStack, TwigStackList, which “looks ahead” some data
nodes in inverted lists and caches them in main memory, to
make TwigStack optimal for twig queries where all “/” axes
are under nonbranching nodes. More recently, in iTwigJoin
[15], Chen et al. extended TwigStack to make it optimal for
twig queries with “/” axes only or involving one branching
node only by further partitioning each inverted list into
multiple sublists based on the level numbers [15] or on root

paths [14] of data nodes in the inverted list. We will discuss
this method in more detail in Section 4.3.

Skip: no need to sequentially read the entire inverted
list. As in the context of binary joins (Section 4.1.2), the skip
technique using XB-tree [9] or XR-tree [63] indexes might
reduce the disk-read costs of the holistic join significantly.
The difference is that in the context of the holistic join, it is
important to determine at each step which “broken” query
edge should be selected to skip over first. In Fig. 16c, fixing
the edge ðB;CÞ first will cause significant disk overhead,
since all of b1 to bi and c1 to ci have to be read sequentially.
However, fixing the edge ðA;BÞ first can help avoid such
high costs, since cursorB can skip directly from b1 to bi, and
then, cursorC skips directly from c1 to ci when fixing the
edge ðB;CÞ. In [65], Jiang et al. proposed an extension,
TSGeneric+, of TwigStack with “skip”, which uses histo-
gram and sampling techniques developed in [114] to
estimate the average “intermatch distance” (AID) for each
pair of query nodes (that is, for each query edge) based on
the statistical knowledge on the XML data. The order of
fixing broken query edges is in the decreasing order of the
AID of query edges. Fontoura et al. [42] further optimize
“skip” to reduce the number of expensive physical cursor
moves (that is, the number of probes of the index prebuilt
on inverted lists) by trying to use virtual cursor moves as
much as possible. For example, in Fig. 16c, it is cheaper to
virtually move cursorB (from b1) to cursorA:startþ
1 ðcursorA ¼ a1Þ than physically moving it to bi:start, since
bi must be retrieved by probing the index on listB by using
cursorA:start.

Dewey coding: no need to read inverted lists of internal
query nodes. In VirtualJ [122], Yang et al. observed that the
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Fig. 19. The PathStack approach: An example.

Fig. 20. The TwigStack approach: An example.
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inverted lists of internal (nonleaf) query nodes do not need
to be accessed during query processing if each node in the
inverted lists is expressed using Dewey coding rather than
PrePost coding, in the form of ðidPath; tagPathÞ. Here,
idPath and tagPath are the Dewey vector and the root path
of the node, respectively. Note that all ancestors of a node
can be retrieved from its idPath and tagPath. For
instance, for the query in Fig. 20, we only need to access
the inverted lists of C and D. Specifically, only those C
nodes and D nodes whose tagPath matches the path
patterns “==A==B==C” and “==A==D,” respectively, qua-
lify for the join. Furthermore, following the framework of
TSGeneric+, which has a cursor for each query node,
VirtualJ defines “virtual cursors” for internal query nodes
A and B. Here, “virtual cursor” means that cursorA and
cursorB are derived from the idPath of C nodes and D
nodes rather than from listA and listB, respectively. In the
join process, it is not necessary to physically skip
ancestors. For instance, in the example in Fig. 16b, only
listB is accessed. This way, a1 to ai�1 are implicitly skipped
throughout. Lu et al. [79] independently developed another
holistic-join algorithm TJFast, which is also based on Dewey
coding but with ðidPath; tagPathÞ pairs “compressed” into
one field to save space. Unlike VirtualJ, TJFast is not
coupled with the skip-descendant technique. Although
Dewey-based join algorithms typically read fewer inverted
lists than PrePost-based join algorithms, we observe that the
process of reading the idPath and tagPath of data nodes to
derive their ancestors is essentially backward navigation
(see Section 2.1), which might involve accessing large
numbers of query-irrelevant nodes. Therefore, Dewey-
based join might be less efficient than PrePost-based join
algorithms such as TSGeneric+ when the XML data tree is
deep or when ancestor query nodes are very selective (see
Fig. 16a for an example).

In other projects, Jiang et al. [62] extended TwigStack to
process twig queries with OR predicates, and Bruno et al. [8]
extended TwigStack to multiquery processing.

4.1.4 The Index-Graph-Aided (IGA) Approach

The IGA approach is not an independent approach. Rather,
it is coupled with other approaches to facilitate query
processing [68] whenever some type of index graph GI of
the original XML data—P-index or T-index (Section 2.2)—is
available and is small enough (for example, due to the
coarse structure of XML data) to navigate efficiently.

As discussed in Section 2.2, T-indexes directly cover twig
queries but usually are of larger size than P-indexes. When
only P-indexes are available, the IGA approach uses a two-
step process to answer twig queries:

1. Path selection. A twig query is decomposed into
multiple path queries, and IGA navigates over GI to
derive one set of (answer) index nodes Ik for each
path query Pk. A relevant graph-querying algorithm
can be found in [110].

2. Path joining. The data nodes within all Ik’s are
joined to get answers to the twig query. Note that the
data nodes within an index node are stored on disk
in the increasing order of their start numbers, as in
inverted lists. Therefore, the native join algorithms
that we introduced earlier are applicable.

It is easy to see that this two-step process is similar to the
PM approach introduced in Section 3.3 (see Fig. 10a for an
illustration of the path-decomposition process). The differ-
ence is that IGA facilitates step 1 by using P-indexes rather
than using any indexes on the path attribute in the Path
table (for example, on the ReversedPath attribute in the
ReversedPath table; see Fig. 9b), as PM does, while
implementing step 2 by using native joins rather than
simply pushing down the path-joining task to the SQL
engine, as PM does.

IGA has the following benefits: 1) it is not necessary for
all nodes in the inverted lists to take part in the join process,
which reduces the disk-read costs significantly if path
queries are very selective. For example, in Fig. 10a, only the
C nodes that satisfy “==A=B=C” rather than all C nodes in
listC participate in the join process. 2) If not all query nodes
are output nodes, then IGA can also reduce the number of
joins, similar to PM.

P-indexes are not the only option for facilitating path
selection. We observe that the B+-tree index on PLabel
proposed in BLAS (Section 3.3) is essentially an implicit and
typically more efficient approximation of P-indexes. First,
PLabeling is an implicit approximation because it clusters
data nodes by their reversed paths (all data nodes having
common prefixes on their reversed paths are clustered in
adjacent positions in the PLabel number space) without
physically partitioning them into explicit index nodes.
Second, PLabeling is more efficient because it is implemen-
ted via a B+-tree index, a classical I/O-efficient index that
has been widely incorporated into today’s mainstream
DBMSs. For a given path query, an SQL range query can
retrieve answer nodes very efficiently by probing only a few
(usually one or two) disk blocks in a B+-tree while always
obtaining precise query results. In contrast, P-indexes are ad
hoc indexes in today’s DBMSs. Furthermore, many existing
space-saving P-indexes, for example, A(k)-index, are not
precise for all queries, as discussed in Section 2.2, and
typically derive a superset of the answer nodes. However,
PLabeling also incurs a limitation: It clusters data nodes on
disk based on ðPLabel; startÞ rather than on start, as in
inverted lists. For example, two data nodes, a1 and a2, with
the reversed paths “D-C-B” and “D-C-A,” respectively, are
such that a1:PLabel > a2:PLabel, but it can be that
a1:start < a2:start. Therefore, before native join algorithms
are applied, the data nodes derived by path queries, for
example, a2�a1 by “==C=D,” have to be first sorted in the
increasing order of their start numbers. This might result in
significant costs if path queries are not sufficiently selective.

4.2 The Sequence Approach

In ViST [113], Wang et al. proposed a method, which we call
the sequence approach, for twig pattern matching. The
motivation is to avoid the expensive path-solution-joining
step used in the second phase of TwigStack by using the
entire query twig rather than paths as the basic unit of
answering twig queries. The approach works as follows:

1. Preprocessing: encoding data and query as se-
quences. All nodes in the data tree are encoded in a
certain way and are then ordered into a sequence SD.
Similarly, all nodes in the query twig are encoded
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and ordered into a sequence SQ. ViST encodes each
node by using its root path and orders all nodes by
using preorder. PRIX [97] encodes each node by
using the tag of its parent node and orders all nodes
by using postorder (into Prufer Sequence [95]).

2. Querying as subsequence matching. The original
task of twig pattern matching is transformed into the
task of subsequence matching, that is, into finding in
SD all (noncontiguous) subsequences that match SQ.
This task is implemented via iteratively probing a
“virtual trie”7 index prebuilt on SD, which is
physically implemented as two levels of B+-trees
with ðcode; posÞ as keys (see Fig. 21), where code is
the code of the node in SD, and pos indicates the
position of the node in SD. Each index probe
ðq:code; d:posÞ, where q is a query node, and d is a
data node, first probes the first-level B+-tree by
using q:code to reach the corresponding second-level
B+-trees and then retrieves the nodes in the second-
level B+-trees whose pos is larger than d:pos. In
Fig. 21, first, an index probe ðð==AÞ; 0Þ is issued to
reach Tree 2, and all nodes in Tree 2 are retrieved.
Then, for a retrieved node, say, a2, an index probe
ðð==ABÞ; a2:posÞ is issued to reach Tree 3, and b2 is
retrieved. Finally, an index probe ðð==ACÞ; b2:posÞ is
issued to reach Tree 4, and c2 is retrieved. Thus,
ða2; b2; c2Þ is among the results of subsequence
matching.

3. Postprocessing: refining the results. Not all sub-
sequence matches returned in step 2 correspond to
final twig solutions. For example, in Fig. 21, only
ða3; b2; c2Þ is a twig solution, whereas the other four
tuples are not. Therefore, the matches returned in
step 2 have to be further refined to get precise query
results. ViST uses expensive joins [112], and PRIX
uses a sophisticated four-phase process to perform
the refinement.

Note that step 2 above might generate many more
redundant twig solutions (subsequence matches) than the
redundant path solutions generated by TwigStack, which
undermines the original goal of the Sequence approach.
For example, in Fig. 21, exponentially more redundant

subsequence matches would be generated, given that the
subtree rooted at a3 in the data tree is duplicated
repeatedly as following-siblings of a3. Wang and Meng
[112] addresses this issue by merging steps 2 and 3. The
intuition is that at each probing step, only those nodes in
the second-level B+-trees that do not violate the “sibling-
covering” constraint [112] are retrieved. In the example in
Fig. 21, when a2 is retrieved, and an index probe
ðð==ABÞ; a2:posÞ is issued to reach Tree 3, b2 is not
retrieved because b2 is sibling-covered by a2 : a3, a sibling
of a2, is located between a2 and b2 in SD.

The Sequence approach has the following limitations:
1) It supports ordered twig queries only. For example, the
query in Fig. 21 requires a B-branch to appear before a
C-branch. To answer a general (unordered) twig query Q,
we have to first transform Q into multiple ordered twig
queries with different branch orders and then pose the
queries separately against the data tree, which could result
in high query costs when Q involves many branches. 2) It
may involve a large number of index probes. As we
mentioned in Section 4.1.1, index-probe operations might
result in high random disk I/O costs. 3) It might
repeatedly visit many data nodes unnecessarily. In
Fig. 21, b2 is visited by the index probes from a1, a2, and
a3, since b2:pos > ai:pos. However, the visits via a1 and a2

are not necessary and can be avoided in the Join approach.
For example, in MPMGJN, the inner loop join of a1 visits
only b1. The reason is that the Sequence approach uses
ðai:pos;þ1Þ to probe indexes, whereas MPMGJN uses
ðai:start; ai:endÞ to directly retrieve all descendants of ai.

4.3 The Navigational Approach

Unlike the Join approach, which searches for twig matches
by joining inverted lists, the Navigational approach does
that by traversing the data tree along tree edges.

Navigation is the only available option when filtering/
querying streaming XML data. In the streaming context,
XML data arrive in the form of data streams, without any
associated indexes, and the entire XML data tree has to be
traversed node by node in the depth-first order, which
preserves the original XML document order.

Stream filtering. Recall that in most SDI applications
(Section 1.3), a document filter is designed to match each
incoming XML document with a collection of subscribed
queries. Usually, the subscribed queries are presimulated as
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automata, for example, as nondeterministic finite automata
(YFilter [34], [35]), as deterministic finite automata [49], or as
deterministic pushdown automata (XPush [55]). Then, the
document filter runs the streaming XML document D,
which is parsed by a SAX parser [89] sequentially on the fly
over (query) automata, as if D were a string, to determine
whether D should be accepted by the automata or not. The
key idea of improving the performance of such document
filtering over a large number of subscribed queries is to
share common subexpressions among subscribed queries,
for example, common path prefixes (YFilter [34], [35]),
common predicates (XPush [55]), and common substrings
(XTrie [12]), as much as possible.

Stream querying. A considerable number of stream-
querying systems have been developed, with the goal of
achieving high CPU performance when evaluating one
(rather than multiple, as in SDI applications) XPath/XQuery
query over streaming XML data. The stream-querying
algorithms have to satisfy stricter requirements than the
nonstreaming algorithms reviewed in this survey in that all
the data must be read sequentially in one pass, without the
help of any indexes. An early XPath stream-querying system
XSQ [93], [94] incurs exponential (query) time complexity.
Two other XPath stream-querying systems, TurboXPath [66]
and TwigM [17], achieve polynomial time complexity.
Another XPath stream-querying system XAOS [6] evaluates
XPath queries with the parent and ancestor axes (see
Section 1.2.1), as well as the commonly used “/” and “//”
axes. Recently, some XQuery stream-querying systems have
also been developed such as XSM [80], BEA/XQRL [39],
FluX [71], Raindrop [107], and FlowGraph [75]. Some of
these systems, including XSM, FLuX, and Raindrop, also use
the available DTD (Section 3.4) schema information to
improve the stream-querying performance and reduce the
size of the runtime buffering space.

In the context of querying persistently stored (non-
streaming) XML data (which is the focus of this survey),
where the goal is to achieve high disk I/O performance,
navigation is one of many possible choices. It has been used
in many early native XML DBMSs such as Lore [81], [82]
and Natix [38]. In most navigation-based systems, the data
tree is partitioned into a series of subtrees in the depth-first
order (which preserves the original XML document order)
rather than into inverted lists based on tag names, and each
subtree is stored on a separate disk page (see Fig. 22a). The
record of each node on a disk page can include the ðtag; idÞ
pairs of all children of that node, which records the

information on tree edges for facilitating forward naviga-
tion (see Fig. 22b) or can also include the ðtag; idÞ pair of the
parent of that node for facilitating backward navigation.
However, as discussed in Section 2.1, either forward and
backward navigation is generally not very efficient, since
each might involve accessing large numbers of query-
irrelevant data nodes scattered across a number of disk
pages and thus cause high disk I/O cost. This fact motivates
the development of the Join approach, which joins only
query-relevant inverted lists by using numbering schemes.

Recently, Niagara [56] and NoK [125] have called for a
revival of navigation. The authors argue that navigation
might be more efficient than join when processing the “/”
axis. For example, in Fig. 22, joining listA, listB, and listC is
not efficient, since b3 through bn in listB are proper
descendants, rather than children, of a1. In contrast,
navigation can avoid unnecessary accesses to b3 through
bn (see Fig. 22b). Motivated by this, Niagara answers twig
queries in a mixed mode of navigation and join. In
particular, it constructs a sophisticated cost model to
determine the navigation part and the join part of a query.
The experimental results in [56] seem to indicate that
navigation is always selected for the “/” axis and join for
the “//” axis. For example, for query “=A=B=D==F ,”
Niagara selects navigation for “=A=B=D” and then join for
“==F .” It is explicitly proposed for NoK [125] to use
navigation for all cases of the “/” axis, and join for all cases
of the “//” axis in a query.

We beg to differ in that we think that joins could be more

efficient than navigation, even when processing the “/” axis,

provided that iTwigJoin [15] (a variant of TwigStack) is used.

As mentioned in Section 4.1.3, iTwigJoin achieves optimality

for twig queries with only the “/” axis by partitioning each

inverted list into multiple sublists based on the level values

of data nodes. For example, in Fig. 22c, listB is partitioned

into three sublists: LBð2Þ, LBð3Þ, and LBð5Þ. This way, only

level-relevant sublists are joined with each other when

processing the “/” axes, omitting unnecessary accesses to

level-irrelevant sublists, for example, LBð3Þ and LCð4Þ. It is

easy to see that iTwigJoin has better performance than

navigation, since it clusters nodes on disk based on their

ðtag; level; startÞ triples, whereas the disk pages retrieved in

navigation, for example, Page 1 in Fig. 22b, may include

many query-irrelevant nodes such as d1 and e1.

At the same time, recall from Section 4.1.3 that some

competitive Join techniques such as VirtualJ, incorporate
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backward navigation implicitly in their join process.

Navigation appears there in the form of exploring the

Dewey vectors of data nodes stored in inverted lists to

reduce the number of joins and to achieve good query

performance when the XML data tree is shallow and when

the descendant query nodes are very selective.
We also note that when processing a sequence of

consecutive “/” axes in a query, say, “==A=B=C,” naviga-
tion is not really necessary if some type of path index such
as PLabeling (Section 3.3) is available. In such case, an SQL
range query on PLabel could be much more efficient than
navigation.

4.4 Summary

The Join approach provides an efficient native implementa-
tion of �-joins used in the relational approach. As discussed
in Sections 4.2 and 4.3, in general, Join has performance
advantages over Sequence Matching and Navigation. Some
experimental work by Moro et al. [86] has also partially
verified this point.

Specifically, among the Join techniques: 1) the perfor-
mance of Holistic is better than that of MPMGJN or of
StackTree; that is, the pipelining-join strategy tends to
dominate the binary-join strategy, 2) when an index graph
or a PLabeling index is available, it could be used to reduce
the number of joins or to “shorten” the inverted lists before
the joins, and 3) generally, TSGeneric+ and VirtualJ seem to
be the most competitive Holistic techniques. TSGeneric+, a
variant of TwigStack with “skip,” reduces the length of the
inverted lists accessed during the joins. VirtualJ, a Dewey
variant of TSGeneric+, reduces both the number and length
of the accessed inverted lists. However, when the XML data
tree is deep or when the ancestor query nodes are very
selective, VirtualJ may yield to TSGeneric+ in performance.

5 CONCLUSION

We have reviewed several major techniques for XML twig-
query processing and categorized them into two classes,
that is, the relational approach and the native approach:

1. In the relational approach, XML data are loaded into
relational databases, and XML twig queries are
transformed into SQL queries over relational data.
All query processing are typically pushed into
existing relational query optimizers, rendering major
extra implementation unnecessary. However, cur-
rent RDBMSs do not support �-joins efficiently,
although �-joins have become an important compo-
nent of answering XML queries efficiently. Among
the relational approaches, the BLAS approach—an
extension of the basic RP approach with PLabe-
ling—seems to be the best with respect to query
processing performance.

2. In the native approach, XML data are stored on disk
in the form of inverted lists, sequences, or trees, and
native algorithms are developed to further improve
XML twig-query performance. Among the native
approaches, the Join approach provides an efficient
native implementation of �-joins used in the rela-
tional approach and seems to show the most
promising query performance in practice. However,
in the native approach, many important RDBMS

components such as storage management, access
methods, query processing and optimization, and
concurrency control and recovery have to be built
from scratch.

A good trade-off between the relational approach and

the native approach would be storing XML data in the form

of inverted lists by using existing relational databases,

coupled with integrating efficient native join algorithms for

XML twig queries into existing relational query optimizers.

That is,

00relational storage00 of XML data

þ 00native processing00 of XML queries:

As a result, by using extended relational query optimizers,

RDBMSs would be able to process XML twig queries more

efficiently, whereas other important existing components

of RDBMSs could be fully reused. One such integration

could result in higher XML query processing performance

and could also significantly reduce system-reengineering

costs. This framework happens to be the choice of current

mainstream commercial RDBMSs, including IBM DB2 [7],

[59], Microsoft SQL Server [88], [90], and Oracle DB [87],

on their way toward efficient XML data querying and

management.
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