
An Evaluation of Regular Path Expressions with Qualifiers
against XML Streams

Dan Olteanu, Tobias Kiesling, François Bry
Institute for Computer Science, University of Munich, Germany

{olteanu,kiesling,bry}@informatik.uni-muenchen.de

Abstract

This paper presents SPEX, a streamed and progressive
evaluation of regular path expressions with XPath-like qual-
ifiers against XML streams. SPEX proceeds as follows.
An expression is translated in linear time into a network
of transducers, most of them having 1-DPDT equivalents.
Every stream message is then processed once by the entire
network and result fragments are output on the fly. In most
practical cases SPEX needs a time linear in the stream size
and for transducer stacks a memory quadratic in the stream
depth. Experiments with a prototype implementation point
to a very good efficiency of the SPEX approach.

1 Motivation

Querying data streams is motivated by applications like
real time measurements and continuous services which se-
lect informations from continuous streams of data, e.g.
stock exchange or meteorology data. For a selective dissem-
ination of information, streams have to be filtered according
to complex queries before being distributed to subscribers
[2]. To integrate data over the Internet, particularly from
sources with low throughput, it is desirable to progressively
process the data before the full stream is retrieved [5]. Fur-
thermore, the data streams considered in such applications
can be infinite. Thus, traditional querying approaches based
on parsing and buffering are not applicable. The messages
of a data stream are conveniently modeled with XML and
message selection is naturally expressed using regular path
expressions with qualifiers.

2 Overview

SPEX stands for a streamed and progressive evaluation
of regular path expressions against wellformed XML
streams. Streamed evaluation means that a data stream is

not completely buffered, progressive processing means that
results are streamed and delivered on the fly.

XML Streams and Query Language. Streaming an
XML document corresponds to a traversal of the XML
document in document order, i.e. a preorder traversal of
the document tree. The document tree nodes correspond
to stream messages. SPEX provides support for query-
ing XML streams by means of regular path expressions
[1] with qualifiers like those of XPath [9]. More pre-
cisely, the query language processed by SPEX subsumes
the XPath fragment represented by child and descen-
dant forward steps, union and intersection set operations
and multiple and nested qualifiers. The qualifiers, i.e.
value comparisons and structural conditions, do not cre-
ate result, but rather condition the result. Any expres-
sion is allowed as a structural condition. E.g. the expres-
sion root. *.a[a][b[c=’text’]].c, where * is a
wilcard closure step, selects all c messages that are chil-
dren of a messages that have (at least) an a child and a b
child with a c child that has the value text. Furthermore,
the backward steps ancestor and parent are treated.
As established in [8], they are expressible in the aforemen-
tioned query language fragment. The addition of variables
proves to be straightforward [7].

Translation to SPEX Networks. For each regular path
expression construct, e.g. a step or a structural condition,
a SPEX pushdown transducer is defined. A SPEX trans-
ducer is similar to a conventional deterministic pushdown
transducer (DPDT), except that it does not have accepting
states and that it has two stacks, i.e. it is a 2-DPDT. How-
ever, both stacks are updated in a synchronized manner, and
most SPEX transducers can be reduced to 1-DPDT [7].

A regular path expression is translated into a network of
interconnected SPEX transducers. A SPEX network is a di-
rected acyclic graph (DAG), where each node consists in a
SPEX transducer and an edge relates an output to an input
tape of two successive transducers. The communication be-
tween transducers is done by having a transducer writing a
message on its output tape, the next transducer reading that
message from its input tape. The messages that stream into

 

 

 702

 

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:01 from IEEE Xplore.  Restrictions apply.



the network are on one hand the messages constituting the
input stream, and on the other hand internal control mes-
sages needed e.g. for changing transducer states.

SPEX Network Evaluation. The evaluation of a SPEX
network assumes a pipeline execution model, where each
transducer processes a stream message before forwarding it
to the next transducers. The message processing in some
transducers can result in the creation of control messages.
This is the case when specialized transducers, that con-
vey the semantics of different regular path expression con-
structs, match the incoming stream message. E.g. an a child
transducer CH(a) (corresponding to an a child step) can
match an a message at a certain nesting level in the stream,
as provided by one of its stacks, the depth stack. Then,
a special control message, an activation message, is for-
warded to the immediate next transducers, activating them,
i.e. instructing them to try also to match. When such activa-
tion messages reach the last transducer in the network, then
result candidates are considered.

The support for qualifiers enhance the aforementioned
evaluation model. That is, the result candidates can be con-
strained by the fulfillment of certain conditions, expressed
in the supported query language as qualifiers. During the
evaluation, a condition is modeled as a boolean variable. A
variable is set to true via a determination message, when
its related condition is fulfilled. The composition of such
variables using and and or connectors results in boolean
formulas. Keeping track of formulas is done individually
for each transducer by means of a condition stack. When
a transducer matches, then it activates its successor trans-
ducers with an activation message containing the topmost
formula from its condition stack. The newly activated trans-
ducers push the received formula on their condition stacks.
Therefore, result candidates depend on the topmost formu-
las from the condition stack of the last-but-one transducer.
The dependencies between candidates and boolean formu-
las can not be overcome, as there are situations in which re-
sult candidates depend on conditions that can be evaluated
only based on characteristics of future stream messages.

The move from transducer chains to DAGs is supported
by specialized transducers, that have two input tapes and
two output tapes, respectively. In this way, branching and
joining in the evaluation flow are enabled. Branching is
needed e.g. for evaluating two expressions in parallel. Con-
sider the regular path expression root.a[b].c. While
trying to satisfy the [b] qualifier, one should look also for
c messages, as under an a either b or c might be found.
The joining of evaluation flows is convenient e.g. for com-
pacting the network, avoiding redundancy, and eliminating
duplicates. With the expression root.(a*. * | b).d
a d message can be selected via an a*. *, or a b, or both,
therefore making the evaluation flow joining desirable.

Example. Consider the regular path expression with

SP

VF([b])

JO OUIN CH(a) VC([b])

CH(b) VD

[ b ]root a c

CH(c)

Figure 1. SPEX network for root.a[b].c

qualifiers root.a[b].c which selects the c messages
that are children of a messages, such that the a’s are chil-
dren of the root message and each of them has at least
a b child message. Evaluated against the XML stream
<$><a><c></c><b></b></a></$>, the expression
selects the c message. Figure 1 shows the corresponding
SPEX network, where each box represents a SPEX trans-
ducer. The input transducer IN forwards into the network
one message at a time and when it encounters the root mes-
sage $, it activates with a true formula the next trans-
ducer. The child transducer CH(a) is activated and it tries
to match a messages only at the level of the direct children
of the root. Thus, it matches the next a message, and acti-
vates the next transducer VC([b]) with the formula from
the top of its condition stack. The variable creator trans-
ducer VC([b]) creates condition variables for every acti-
vation it receives, here co1, and sends a conjunction of the
received formula and the new created variable: co1 ∧ true.
The split transducer SP forwards the received activation to
the child transducer CH(b) and to the join transducer JO.
The join transducer lets the activation through and, for for-
warding also the current stream message a, it waits for it
to arrive on both input tapes, hence avoiding message du-
plication. The child transducer CH(c) is also activated.
After having the current message a also processed by the
other transducers following CH(b) in the branch, JO for-
wards the a to CH(c). The next stream message c is not
matched by any other transducer but CH(c)which activates
the output transducer OU with the formula from the top of
its condition stack, i.e. co1. In this way, OU is notified that a
result candidate is considered and this depends on the value
of co1, which is undetermined at this time. CH(b) tries to
match without success and waits to reach the same nested
level for a new matching attempt. The message correspond-
ing to the closing tag of c is also buffered by OU and gives
again the opportunity to CH(b) and CH(c) to match. Only
CH(b)matches the new stream message b and activates the
variable filter transducer VF([b]) and then a variable de-
terminant VD with the formula co1. At this point, a deter-
mination message is generated, which sets the variable co1

to true. This determination message reaches incremen-
tally all the transducers positioned after VD and at OU the
only candidate is considered result and is output. The left
messages empty the transducer stacks.

 703

 

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:01 from IEEE Xplore.  Restrictions apply.



3 Salient Features

A detailed description of SPEX is given in [7]. Some of
its salient features are:

1. The translation of a regular path expression with qual-
ifiers into a SPEX transducer network takes a time linear in
the size of the expression. A SPEX transducer has a fixed
number of states, its depth stack alphabet consists of a fixed
number of symbols and its condition stack alphabet consists
of run-time generated symbols, i.e. formulas. The condition
stack is needed for evaluating expressions with qualifiers.

2. The evaluation of a SPEX network is performed in one
pass over the stream and requires for every transducer stack
a number of entries bounded in the depth d of the stream. In
most practical cases it takes a time linear in the stream size
and uses formulas with a size bounded in d. Without qual-
ifiers or closure steps the size of a formula is constant. The
evaluation of expressions with qualifiers on n wildcard clo-
sure steps can require formulas with size exponential in the
number of such steps, i.e. dn. The last transducer takes care
of outputting ordered result and in the worst case it needs a
memory linear in the stream size. However, it buffers mes-
sages only if their membership in the result can not be de-
cided based on the stream fragment already processed.

3. The computational power needed by a transducer from
a SPEX network, except its last transducer, is within the 1-
DPDT class. Note that this is the lowest bound for the com-
putational power needed for querying XML streams with
regular path expressions [7]. The output transducer needs
the computational power of a Turing machine.

4. Experiments with a prototype implementation point
to a very good efficiency of SPEX. The prototype supports
also other XPath navigational capabilities, i.e. following and
preceding, and node-identity joins. Compared with exist-
ing XPath processors, SPEX overcomes them in most of
the medium-sized scenarios and scales acceptable in cases
when the other processors can not handle huge data, e.g. ≥
1 GB [7]. The prototype was tested also against application-
generated infinite streams and proved stable in cases where
the depth of the tree conveyed in the stream is bounded.

4 Related Work

There are by now several proposals towards an efficient
streamed evaluation of XML queries [5, 2, 4, 3]. SPEX adds
to this common effort a formal framework and reasonable
features, by keeping in the same time the expressiveness of
the supported XML query language (at least) as powerful as
of the above-cited proposals. To the best of our knowledge,
SPEX is the only current approach that accomodates XPath
qualifiers, closure and backward navigation.

The query operator X-Scan from the Tukwila data inte-
gration system [5] compiles regular path expressions into

deterministic finite automata (DFA). The DFA reports to a
host application when a node is reached in a final state. An
improved version [4] considers an evaluation model based
on the on-demand (lazy) creation of DFA. Both approaches
use also stacks for keeping track of previous states. In [4]
some expressions can be considered qualifiers, but their re-
lations to the other expressions are left to a host application.
SPEX is based on the evaluation of these connections be-
tween expressions inside and outside qualifiers and does not
need extra logic for providing correct result. The XFilter [2]
and YFilter [3] engines are used for deciding if entire XML
documents are matched by XPath expressions that represent
user profiles. Therefore, they are not focused on answering
XPath expressions. YFilter [3] proposes also a basic multi-
query optimization technique for reusing common prefixes
of several queries. XSM [6] was developed in parallel to
SPEX. Although both use a novel approach for a query ex-
ecution plan based on transducer networks, their evaluation
models, transducer types and query language features are
quite different. SPEX is designed for low computational
power and memory usage, which we consider essential in
a stream-based context. It uses strongly coupled (i.e. with-
out in-between queues) pushdown transducers and supports
closure steps and qualifiers. XSM uses more general loosely
coupled transducers with unbounded buffers and (therefore)
supports value-based joins and element creation constructs.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web.
From Relations to Semistructured Data and XML. Morgan
Kaufmann, 2000.

[2] M. Altinel and M. Franklin. Efficient Filtering of XML Doc-
uments for Selective Dissemination of Information. In Proc.
26th Int. Conf. on Very Large Data Bases, 2000.

[3] Y. Diao, P. Fischer, M. J. Franklin, and R. To. YFilter: Ef-
ficient and Scalable Filtering of XML Documents. In Proc.
18th Int. Conf. on Data Engineering, 2002.

[4] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing
XML Streams with Deterministic Automata. Technical report,
Univ. of Washington, 2002.

[5] A. Levy, Z. Ives, and D. Weld. Efficient Evaluation of Regular
Path Expressions on Streaming XML Data. Technical report,
Univ. of Washington, 2000.

[6] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A
Transducer-Based XML Query Processor. In Proc. 28th Int.
Conf. on Very Large Data Bases, 2002.

[7] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Reg-
ular Path Expressions with Qualifiers against XML Streams.
Technical Report PMS-FB-2002-12, Univ. of Munich, 2002.

[8] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Look-
ing Forward. In Workshop on XML-Based Data Management,
2002. Springer LNCS 2490.

[9] W3C. XML Path Language (XPath) Version 1.0. W3C Rec-
ommendation, 1999. http://www.w3.org/TR/xpath.

 704

 

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:01 from IEEE Xplore.  Restrictions apply.


