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Abstract

The filtering of XML data is the basis of many complex
applications. Lots of algorithms have been proposed to
solve this problem[2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 18]. One
important challenge is that the number of path queries is
huge. It is necessary to take an efficient data structure rep-
resenting path queries. Another challenge is that these path
queries usually vary with time. The maintenance of path
queries determines the flexibility and capacity of a filtering
system.

In this paper, we introduce a novel approximate method
for XML data filtering, which uses Bloom filters represent-
ing path queries. In this method, millions of path queries
can be stored efficiently. At the same time, it is easy to deal
with the change of these path queries. To improve the filter-
ing performance, we introduce a new data structure, Prefix
Filters, to decrease the number of candidate paths. Exper-
iments show that our Bloom filter-based method takes less
time to build routing table than automaton-based method.
And our method has a good performance with acceptable
false positive when filtering XML packets of relatively small
depth with millions of path queries.

1. Introduction

XML is quickly gaining dominance as a format for ex-
changing and storing semi-structured data. Plenty of infor-
mation is represented in XML format and is delivered to end
users or clients. For example, in a publish/subscribe system,
users subscribe news or production information to their ser-
vice providers. Service providers should filter all their in-
formation and deliver to users what they want. Such appli-
cations include stock and sports tickers, traffic information
system, electronic personalized newspaper, and entertain-
ment delivery. In such environments, new information is
produced continually and the total amount of information
is huge. Most of such information is represented in XML
format and is processed as a stream. Furthermore, users’

interest could vary with time. These applications must deal
with the change of their users’ interest efficiently. There-
fore, the processing performance and queries maintenance
are both critical for these applications.

Recently, lots of works have been proposed for XML fil-
tering and stream processing[2, 3, 5, 6, 7, 8, 9, 11, 12, 13,
18]. All these works take a stream of XML documents as
input, and compute path queries against the stream to iden-
tify the matches. In general, the documents in the stream
are small packets, called as XML Packets. User’s interests
are represented as XML path queries in these works. In this
paper, we focus on the scenario of XML data dissemination,
where many XML path queries are preprocessed to build a
routing table, and incoming XML packets are evaluated on
the routing table for dissemination. There have been two
types of works of solving this problem, automaton-based
methods[2, 8, 12, 11, 9] and index-based method[5]. The
former transforms XML path queries into an automaton,
such as NFA, DFA or Pushdown Machine. Then, incom-
ing XML packets are navigated through the automaton to
identify the matched queries and relevant users. The latter
combines XML path queries into a prefix tree and builds
an element position index for the incoming XML packet.
Then, the prefix tree is computed based on the index for
the matched queries. In case the automaton or the index
has been constructed, both of them can process incoming
XML packets efficiently. However, in the scenarios where
the number of XML path queries is huge or the set of XML
path queries changes, the efficiency and the maintenance of
routing table would be the bottleneck of systems.

This paper proposes a novel technology for XML pack-
ets filtering. We take an XML path query as a query string,
and all query strings of one user are mapped into a Bloom
filter by hash functions. The routing table is comprised of
many Bloom filters. For each incoming XML packet, it is
parsed to generate a set of candidate paths, while each can-
didate path is mapped to a bit-vector by the same hash func-
tions to compare with the routing table. If a candidate path
is determined existing in a user’s Bloom filter, the related
XML packet fragment is routed to the user. The main con-
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tributions of our work are the following:

• We present a novel technology of filtering XML pack-
ets, i.e. Bloom filter-based filtering. It can filter XML
packets efficiently with relatively low false positive.
In the scenario that the number of path queries is huge,
our technology has obviously advantage in efficiency
and routing table maintenance.

• To improve the performance of filtering, we introduce
a new data structure, i.e. Prefix Filters. It can improve
the filtering performance greatly by decreasing the
number of candidate paths.

• We present an empirical study of Bloom filter-based
and automaton-based filtering. Experiments show that
the former has better performance when the number of
path queries is huge and the depth of XML packets is
relatively small.

1.1 Paper Organization

The rest of the paper is structured as follows. Section 2 is
dedicated to some background knowledge and the problem
statement. In Section 3 we present our basic approach of
filtering XML packets using Bloom filters. Section 4 in-
troduces prefix filters and the maintenance of routing ta-
ble. Section 5 reports our experimental results. Section 6
presents related research works and Section 7 concludes the
paper.

2. Background

In this section, we introduce XML packets and simple
path queries that we process. An overview of Bloom filter
is also presented followed by our problem statement.

2.1. XML Packets and Path Queries

An XML document can be represented as a rooted la-
belled tree, where each node corresponds to an element or
a value. There is a root node for each XML document. For
each element, there is a unique path from the root node to it
which is called as its Node Path. The depth of a node path
equals to the number of nodes in it. The maximal depth
of all node paths is the depth of the XML document. In
general, the depths of most XML documents transmitted
in networks are not large. This paper focuses on the dis-
semination of XML packets, which are small depth XML
documents .

Several query languages have been proposed for XML
data processing, such as XQuery, XSLT and XPath. The

basis of these query languages is path expressions. In this
paper, we consider the simple path query which is described
in definition 1.

Definition 1 (Simple Path Query): A simple path query
of length l has the form “a1n1a2n2 . . . alnl”, where each
ni is an element name or a wildcard symbol “ ∗ ”, and
each ai is either “/” or “//”, which denote parent-child
and ancestor-descendant axes respectively. l is the length of
the path query.

Given a simple path query, it may match many node
paths with different lengths. For example, “/A// ∗ /D”
is a simple path query with length 3, it matches the follow-
ing node paths: “/A/B/D”, “/A/B/C/D”, “/A/C/D”,
and so on. On the other hand, given a node path, it may
also match many different simple path queries. For exam-
ple, “/A/B/C/D” is a depth 4 node path. It matches the
following simple path queries: “//D”, “/A//D”, “//A/ ∗
//D” and so on. To solve the problem of matching a node
path and a simple path query, most traditional methods eval-
uate the simple path query on the node path node by node.
We propose a different method to solve the problem. A sim-
ple path query can be seen as a query string, while many
simple path queries can be produced from a node path. In
other words, we can get a set of query strings from a node
path. Then, the matching of a simple path query with a
node path is equal to the problem of membership problem
of the node path’s query strings set. Thus, the string match-
ing technology can be used.

2.2. Bloom Filters

A Bloom filter is a simple space-efficient data struc-
ture for probabilistic representation of a set that sup-
port membership queries. Bloom filters were introduced
in the 1970’s[4] and have been widely used in different
applications, such as database applications[16, 17], web
caching[10], intrusion detection and query filtering and
routing.

A Bloom filter is essentially a bit-vector of length m used
to efficiently represent a set S = {x1, x2, . . . , xn} of n el-
ements. All bits are set to 0 initially. Then, k independent
hash functions, h1, h2, . . . , hk, are chosen. Each hash func-
tion has range from 1 to m. For each element x ∈ S, the
bits hi(x) are set to 1 for 1 ≤ i ≤ k. A particular bit
may be set to 1 many times, but only the first operation has
an effect. To check if an item y is in S, the bits at posi-
tions h1(y), h2(y), . . . , hk(y) are checked. If any of them
is 0, clearly y is not a member of S. If all hi(y) are set to
1, we assume that y is in S, although we are wrong with
some probability. This is a false positive, where the Bloom
filter suggests that an element y is in S even though it is
not. It has been shown that the probability of a false posi-
tive is equal to (1 − e−kn/m)k[4]. For many applications,
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Figure 1. A Simple Bloom Filter with 4 Hash
Functions

false positives may be acceptable as long as it is sufficiently
small. Figure 1 provides an example of Bloom filter with
4 hash functions. The Bloom filter is a bit-vector of length
10. When we insert a value x into the Bloom filter, the bits
of h1(x), h2(x), h3(x) and h4(x) are set to 1. If we want
to know whether a value y is in the Bloom filter or not, the
bits of h1(y), h2(y), h3(y) and h4(y) are checked.

One property of Bloom filters is that it is not possible
to delete an element stored in the filter. Deleting a particu-
lar element requires that the corresponding positions deter-
mined by k hash functions in the bit vector be set to zero.
This could disturb other elements stored in the filter which
hash to any of these positions. In order to solve this prob-
lem, the idea of the Counting Bloom Filters was proposed in
[10]. A Counting Bloom Filter maintains a counter for each
bit in the Bloom filter. Whenever an element is added to or
deleted from the filter, the counters corresponding to the k
hash values are incremented or decremented, respectively.
When a counter changes from zero to one, the correspond-
ing bit in the bit vector is set to 1. When a counter changes
from one to zero, the corresponding bit in the bit vector is
set to 0. In fact, the counter maintains the number of ele-
ments that hashed to corresponding bit by any of the k hash
functions.

2.3. Problem Statement

We define here the application scenario of XML filtering
systems. There are some data producers in a network, which
produce XML packets and send them to routing servers
(Routers). Users subscribe their queries to routers. All
routers are connected with each other, and every router sub-
scribes all its user’s queries to it’s neighbors. Therefore, a
router can be regarded as a user by its neighbors. A Router
can consume incoming XML packets continuously, and de-
termines which users the packets should be routed to.

An XML router may have lots of users, and every user
has a unique identifier. In our scenario, all user queries
are simple XPath queries. In other words, queries from
a user compose a set of simple XPath queries. When a
router receives an XML packet, it evaluates the query set
on the XML packet for each user. In case there is a simple
path query matched by the XML packet, the router forwards
the corresponding XML packet or a fragment of the XML
packet to the user. We formally define the XML filtering
problem in Definition 2.

Definition 2 (XML Filtering Problem): Given a router S
and the user set of the router U = {u1, u2, . . . , un}. For
each user ui ∈ U(1 ≤ i ≤ n), it subscribes a set of sim-
ple path queries Qi to the router. For each incoming XML
packet p, the router S test every query set Qi(1 ≤ i ≤ n).
If there is a path query q matching p in Qi, user ui’s query
set Qi is matched by p. The XML packet p is routed to all
matched users.

One challenge here is that the number of users is huge
and each user may have a large number of queries. There
should be an efficient data structure in the router to repre-
sent all the queries. Another challenge is that user’s inter-
est will vary with time. The data structure should supports
the update of queries. In this paper we use Bloom filters
to represent users’ queries, which are space-efficient data
structures. In the scenario that users’ queries are updated
frequently, it is easy to maintain users’ queries with count-
ing Bloom filters.

3. Basic Approach

In this section, we introduce how a router maintains its
routing table, and how to process incoming XML packets to
produce candidate paths. After that, the method of routing
XML packets is presented.

3.1. Routing Table

A router must maintain a routing table, which is used
to determine how XML packets are to be forwarded. Each
entry of the routing table corresponds to a user of the router.
In this paper, each routing table entry is a Bloom filter. We
use the Bloom filter to store the query set of a user. Every
user’s query is predigested to a simple path query and is
regarded as a Query String. Then, all the query strings from
the same user are mapped to a m-length Bloom filter by k
hash functions. Figure 2 shows an example of how to build a
routing table entry. The routing table entry is a Bloom filter
of length 8. There are four queries, Q1, Q2, Q3 and Q4,
which come from the same user. These queries are mapped
into the Bloom filter by 2 hash functions, h1() and h2().
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Figure 2. Building a Routing Table Entry

To support queries’ update, we can use Counting Bloom
Filters as the routing table entries. When a query is sub-
scribed by a user, it is mapped to the user’s routing table
entry by k hash functions. For each position, the corre-
sponding counter increments by 1. If the original value of
the counter is zero, the bit of the routing table entry is set
to 1. When a query is unsubscribed by a user, it is also
mapped to the user’s routing table entry by the same k hash
functions. The difference is that the counters corresponding
to the positions decrement by 1. A bit of the routing table
entry is set to 0 when the corresponding counter changes to
zero. The situation in which a user modifies a query can be
treated as an unsubscription followed by a subscription.

Because Bloom filters are space-efficient data structures,
one advantage of using Bloom filters as routing table en-
tries is that the storage of routing table will be compact es-
pecially for large query sets. For example, given 10, 000
users and 10, 000 queries for each user, we use 100, 000 bits
Bloom filters as routing table entries along with 8 hash func-
tions. In such situation, the false positive is about 0.00846,
which is acceptable for most applications. The size of the
routing table is as much as 120 Megabytes. It is easy to be
maintained in main memory nowadays.

3.2. Candidate Path

An XML packet can be viewed as a rooted label tree.
There is a unique node path from root node to each ele-
ment. However, a node path can match many simple path
queries. We can generate candidate paths from a node path
by reassembling its elements. Every incoming XML packet
will produce lots of candidate paths. A candidate path is a
simple path query expression, which is constructed based
on a node path of the XML packet. The axes of a candidate
path are child (/) or descendant-or-self (//). The element
name of each candidate path step is an element name of the
node path. The processing of incoming XML packets is
straightforward. An input XML packet is parsed by a SAX
parser to produce a stream of events. Each event is one
of Start-Document, Start-Element, End-Element, Text and

End-Document. 1 Our Bloom filter-based filtering system
processes incoming XML packets by handling these events.
During the process of parsing an XML packet, the current
node path is stored in variable CurNPath. The system
maintains a candidate path list for each level i, presented as
Li. Li includes all candidate paths of length i belonging
to current node path. Each candidate path in Li has an at-
tribute d, which is the depth of its corresponding element in
the current node path. When a Start-Document event is met,
it means a new XML packet appears, the system initializes
environment. An End-Document event means the end of
current XML packet, the system clears environment. Start-
Element and End-Element events identify the beginning and
the end of an element respectively. When a Start-Element
event is met, the system generates a set of candidate paths
corresponding to the new element. When an End-Element
event is met, the system removes candidate paths related
to the element from Li. The algorithms corresponding to
Start-Element and End-Element events are given in Algo-
rithm 1 and 2 respectively. A Text event identifies that a text
string is met. A text string can be processed as a special
element. A Text event is treated as a Start-Element event
followed immediately by an End-Element event. Here we
ignore the algorithm of Text event processing.

Algorithm 1 StartElement()
Input: Element Name E, Current Depth d
Output: A list of candidate path O

1: if d ≡ 1 then
2: append {“/E”, “//E”, “/ ∗ ”, “// ∗ ”} to L1, O;
3: else
4: append {“//E”, “//∗ ”} to L1, O;{This “// ∗ ” has

different depth with above.}
5: for i = 1 to d − 1 do
6: for all candidate path p ∈ Li do
7: if p.d ≡ (d − 1) then
8: append {“p/E”, “p//E”, “p/ ∗ ”, “p// ∗ ”}

to Li+1, O;
9: end if

10: if p.d < (d − 1) then
11: append {“p//E”, “p// ∗ ”} to Li+1, O;
12: end if
13: end for
14: end for
15: end if
16: Output O;
17: return;

1There are other types of nodes in a XML packet, such as attributes.
As a attribute node can be treated as a special element node, we do not
distinguish among elements, attributes, and other types of nodes in this
paper.
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Start Element A L1: /A, //A, /*, //*

Start Element B

Start Element C

End Element C

L1: /A, //A, /*, //*, //B
L2: /A/B, /A//B, /A/*, /A//*, //A/B, //A//B, //A/*, //A//*, …

L1: /A, //A, /*, //*, //B, //C
L2: /A/B, /A//B, …, /A//C, /A//*, //A//C, //A//*, …, //B/C, //B/*, //B//C,//B//*
L3: /A/B/C, /A/B//C, /A/B/*, /A/B//*, /A//B/C, /A//B//C, …

A

B

C D
L1: /A, //A, /*, //*, //B
L2: /A/B, /A//B, /A/*, /A//*, //A/B, //A//B, //A/*, //A//*, …

Start Element D
L1: /A, //A, /*, //*, //B, //D
L2: /A/B, /A//B, …, /A//D, /A//*, //A//D, //A//*, …, //B/D, //B/*, //B//D,//B//*
L3: /A/B/D, /A/B//D, /A/B/*, /A/B//*, /A//B/D, /A//B//D, …

… …

Figure 3. An Example of Candidate Paths Generating

Algorithm 2 EndElement()
Input: Element Name E, Current Depth d
Output:

1: for i = 1 to d do
2: for all candidate path p ∈ Li do
3: if p.d ≡ d then
4: remove p from Li;
5: end if
6: end for
7: end for

Figure 3 gives an example of the process of candidate
paths generating. Given an XML packet with four ele-
ments, A, B, C and D, A stream of events is produced as
shown in Figure 3. The states of all candidate path lists are
also shown with corresponding events. The candidate paths
written in bold font are new, which are inserted during the
event processing. The main problem of this method is that
the number of candidate paths is huge. For each element
E of depth d(d > 1) , it produces two candidate paths of
length 1, {“//E”, “//∗”}; and it can be combined with ex-
istent length 1 candidate paths to produce candidate paths of
length 2, and so on. It is clearly that the number of candi-
date paths increases exponentially with the depth of current
node path during the processing of XML packets. To solve
this problem, we introduce a new data structure, Prefix Fil-
ters, to decrease the number of candidate paths in Section
4.

3.3. XML Packets Filtering

During parsing XML packet, we can get a set of new
candidate paths when meeting a Start-Element event. For
each candidate path of the set, it is mapped to a m-length
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Figure 4. An Example of Comparison

bit vector by k hash functions. The parameters m and k
are the same with parameters used to build routing table.
Then, we compare the result bit vector with routing table
to determine which users are interested in the XML packet.
There are two types of filtering applications, one route the
whole XML packet to users, another route a fragment of the
XML packet to users. In the former system, all users’ IDs
who are interested in the packet are recorded, and the packet
is forwarded to these users after it is parsed. In the latter, the
current node path CurNPath (described in Section 3.2)
is forwarded to matched users during the XML packet is
parsed.

Figure 4 gives an example of comparing a candidate
path’s bit-vector with routing table. The main process of
the comparison are bit-wise operations. Therefore, it is effi-
cient. Another benefit of this technology is that we can mark
every user with the number of candidate paths matched with
its queries. This number can be used as the weight of the
user. The system can determine which user has high prior-
ity to get the packet based on users’ weight.

This routing technology is approximate because of the
existence of false positive. The probability of a false posi-
tive is equal to (1 − e−kn/m)k[4] according to theoretical
analysis, in which k is the number of hash functions, n is
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the number of queries stored in a Bloom filter and m is the
length of the bit-vector. As mentioned above, a system can
route a whole XML packet or a fragment to users. In the
former scenario, the system route a whole XML packet to a
user mistakenly when all matched candidate paths are false
positive. The probability of such conditions are met is low.
In the latter scenario, the system can adjust the size of a
Bloom filter and the number of hash functions to gain rela-
tively low false positive, according to the number of queries.
For most applications, such false positive’s probability is
acceptable.

4 Prefix Filters and System Architecture

In this section, we first introduce Prefix Filters, which
are used to decrease the number of candidate paths. Then,
a high-level architecture of an Bloom Filter-based XML Fil-
tering system is presented.

4.1 Prefix Filters

When we generate candidate paths using the basic ap-
proach, every new incoming element must be combined
with existent candidate paths. Thus, the number of candi-
date paths increases exponentially with the depth of current
node path of the XML packet. It becomes the bottleneck
of our system. It is obvious that there are many redundant
candidate paths in all candidate paths. For each length n
simple path query (query string), there are length 1, 2, . . . , n
prefix path query strings. If a length l candidate path does
not match any length l prefix strings of all users’ queries,
all the candidate paths beginning with it will not match any
user’s query. According to it, we construct Prefix filters to
decrease the number of redundant candidate paths.

Given the set of all users’ query strings Q, d is the max-
imal length of query strings in the set. For each query
string, there are different length query prefixes. For ex-
ample, query string “/A//B/*” has length 2 prefix string
“/A//B” and length 3 prefix string ”/A//B/*”. There is a
prefix filter Li(1 ≤ i ≤ d) for length i prefix strings. Pre-
fix filter Li is a Bloom filter storing length i prefix strings
of all users’ queries. During parsing an XML packet, every
new produced candidate path of length l will be checked on
prefix filter Ll. If it is not in the prefix filter, none of all
user’s queries will match it. The system will throw away
this candidate path.

Figure 5 gives an example of prefix filters. there are
four queries in Figure 5(a), i.e. Q1, Q2, Q3 and Q4. The
maximal length of these queries is 4. Thus, four prefix fil-
ters L1, L2, L3 and L4 are constructed as shown in Figure
5(a), which are used to store different length query prefixes
respectively. In Figure 5(b), an XML packet is parsed to
generate candidate paths. When the Start-Element event

of element A is met, the system generates four candidate
paths of length 1, i.e. “/A”, “//A”, “/*” and “//*”. Among
these candidate paths, only “//A” is in prefix filter L1. So
the system keeps the candidate path “//A” and throws away
the others. When the Start-Element event of element B is
parsed, it is just combined with “//A” to generate candidate
paths of length 2. For the Start-Element events of elements
C and D, the processing are similar.

4.2 System Architecture

Our Bloom filter-based XML filtering system can work
as an XML Switch in a content-based XML routing network
described in [19]. XML packets are generated at certain
source nodes in the network. Then, these packets are routed
through the network’s servers to end users. Thus, our sys-
tem’s user can be an end user or a neighbor router.

Figure 6 gives the architecture of our Bloom filter-based
XML filtering system. The system maintains two data struc-
tures, Routing Table and Prefix Filters. Each user has a
unique identifier and an entry in routing table, and each
routing table entry is a Bloom filter (or counting Bloom
filter). Prefix filters are also the set of Bloom filters cor-
responding to different level prefix strings of all queries.
The length of a Bloom filter is determined by data it stores.
Therefore, these Bloom filters can have different lengths.
There are two main sets of inputs to the system: user queries
and XML packets. An incoming XML packet is parsed by
a SAX parser to generate a stream of events at first. When
a Start Element event is met, the Candidate Path Producer
keeps the current node path with the element and produces
a set of candidate paths. These new candidate paths are
stored and tested based on routing table by Router, and cor-
responding node path is forwarded to matched users. When
an End Element event is met, the Candidate Path Producer
throws away the candidate paths corresponding to the ele-
ment.

The aim of our system is to disseminate small size XML
packets. For a large size XML document, it also can be
processed if we divide it into many fragments.

5 Experiments

There have been many works on XML packets filtering
now, and most of which are based on automaton technol-
ogy. For the purpose of evaluating the performance of our
Bloom filter-based XML filtering technology, we imple-
ment an automaton-based XML filtering system referencing
Y-Filter described in [8, 5], which have the same functions
as our system. We implemented both systems in C++, and
shared as much code and data structures as possible for a
fair comparison, such as the code of parsing XML packets.
All of the experiments were performed on a PC machine
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Q1: //A//B/C/D

Q2: //A//B/E

Q3: //A//C//D

Q4: //B/D

L1: {//A, //B}
L2: {//A//B, //A//C, //B/D}
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L4: {//A//B/C/D}
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Figure 5. An Example of Prefix Filters
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Figure 6. System Architecture

with Pentium IV 2.4 Ghz processor and 512 MB memory,
running Windows XP professional operating system.

In the experiments, we used MD5[1] algorithm to get in-
dependent hash functions. MD5 is a cryptographic message
digest algorithm, and usually is used in digital signature ap-
plications or as a way of verifying data integrity. It takes
as input a message of arbitrary length and produces as out-
put a 128-bit “fingerprint” or “message digest” of the input.
To build k hash functions, we divide 128-bits MD5 signa-
ture of query strings into k groups, and each group is a hash
function value with 128/k bits. We performed three types
of experiments. The goal of the first set of experiments is to
show the performance of Prefix filters. The second set of ex-
periments focuses on the time of building routing table and
the size of routing table. We compare Bloom filter-based
routing table with automaton-based routing table for differ-
ent sizes query sets. In the third set of experiments, we com-
pare the routing times of Bloom filter-based and automaton-
based filtering. Table 5 gives a summary of parameters used
in the experiments.

5.1 XML Packets and Queries

In the experiments, we use DBLP[15] dataset as the
source of XML packets. DBLP dataset is an XML doc-
ument, including information about papers, thesis, books
and authors. Each paper’s information is represented as a
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Table 1. Parameters of the experiments
Parameter Range

# of hash functions 4-16
Size of Bloom filters 1000-1000000
# of queries per user 100-1000
# of users 100-1000
Depth of XML packet 2-5
Percentage of Matched Queries 10%-90%

fragment of the XML document. We take each such frag-
ment as an XML packet. To get XML packets of differ-
ent depth, several XML packets are combined into a single
packet by replacing some citing papers with its actual XML
information. In our experiments, an XML packet is the min-
imal unit of processing. We select part of DBLP dataset as
our experimental data for convenience. The resulting XML
packets set includes about 10,000 papers’ information, and
the range of depth of XML packets is from 2 to 5.

For the simple path queries, we developed a query gener-
ator, which takes element name sets and corresponding lev-
els as input, and produces simple path queries of different
users according to a set of workload parameters. Parameter
UserNum determines the number of users, and each user has
QueryNum queries. For a given XML packet, there is PMQ
(Percentage of Matched Queries) percent queries matching
the XML packet in each user’s query set. The length of
queries distribute uniformly between 1 to 6. There are not
two same queries in any user’s query set, and any two users
do not have the same queries.

5.2 Performance of Prefix Filters

When prefix filters are used, they can decrease the num-
ber of candidate paths. We take two types of experiments to
validate the performance of prefix filers.

• One experiment reports the relative performance of
candidate paths produced with prefix filters with re-
spect to without prefix filters (i.e., we divide number
of candidate paths with prefix filters by that without
prefix filters). Hence, the lower ratios means that the
performance of prefix filters is better. We count the
number of candidate paths for each incoming XML
packets, and take the average number of 1, 000 XML
packets as the experimental data.

• Another experiment compares the filtering perfor-
mance of the system with and without prefix filters.
similarly, we record the filtering time of 1, 000 XML
packets and take the average as the experimental data.

In the former experiment, we fix the number of queries
per user to 200 and the number of users to 200. Therefore,

the total number of queries is 40, 000. According to the-
oretical analysis, we set the number of hash functions and
Bloom filters’ size to 16 and 4, 200 respectively for rela-
tively low false positive (4.27e−05). The parameter PMQ is
the abbreviation of Percentage of Matched Queries, which
means that there are PMQ% queries matched for each in-
coming XML packet. It varies from 90% to 10%. The main
factor that determines the number of candidate paths is the
depth of input XML packet. We do the experiment with
XML packet’s depth changing from 3 to 6. Figure 7(a) gives
the result of this experiment. The ratio decreases along
with the parameter PMQ. It is consistent with our analysis.
When there are less matched queries, the number of candi-
date paths which pass the prefix filters is smaller. There-
fore, the new element produces less new candidate paths by
combining with existing candidate paths. When the depth
of incoming XML packet increases, prefix filters are used at
each level. Thus, the ratio will increase along with the depth
of XML packet. The experimental result also proves it as
shown in Figure 7(a). For example, when PMQ equals 50%,
prefix filters throw away about half of candidate paths for
depth 3 XML packets; however, only 3% candidate paths
are kept for depth 6 XML packets.

For the latter experiment, the parameter PMQ is fixed as
50%. The number of users varies from 100 to 1, 000, and
the number of queries for each user is 200. The number
of hash functions and Bloom filters’ size are set to 16 and
4, 200 respectively. From the experimental result shown in
Figure 7(b), we know that prefix filters can improve the fil-
ter performance of the system greatly. The ratio of (Without
Prefix Filters / With Prefix Filters) increases along with the
number of users. When a candidate path is generated, it is
mapped into a bit-vector. The bit-vector must be compared
with each user’s routing table entry. Therefore, prefix filters
can save more comparing time when the number of users is
larger.

5.3 Building Routing Table

For a real application, the building time and size of rout-
ing table determine its capacity and ability of processing.
In this set of experiments, on the one hand, we compare
above measurements of our Bloom filter-based filter with
and without prefix filters. On the other hand, we compare
Bloom filter-based filter with automaton-based filter. The
number of hash functions and size of Bloom filters vary
with the number of queries per user to get a relatively low
probability of false positive (about 0.5%).

We first present experimental results of Bloom filter-
based filter comparing with and without prefix filters. Fig-
ure 8 shows the comparison of building time. The num-
ber of users varies from 100 to 1, 000, and each user’s
queries varies also from 100 to 1, 000. So the total number
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of queries varies from 10, 000 to 1, 000, 000. In general,
when the number of a user’s queries is larger, the time of
constructing routing table entry corresponding to the user
is longer. More users means that the time of building the
whole routing table is longer. As we can see in Figure 8, the
building time has approximately linear relationship with the
number of users. The building time of prefix filter increases
along with the number of all queries.

We now report experimental results of comparing Bloom
filter-based against Automaton-based filtering. Figure 9(a)
and 9(b) give the results of building time and routing table’s
size respectively. Here, the building time of Bloom filter-
based includes the time of building prefix filters. When the
number of queries increases, Bloom filter-based technology
is much more efficient than automaton-based method for
building routing table. For example, the building time of
automaton-based is almost 25 times as Bloom filter-based,

when the number of all queries is 1, 000, 000. The reasons
for this situation are as follows. During the process of build-
ing routing table, automaton-based technology constructs a
prefix tree[5] first. Then it transforms the prefix tree into an
automaton. The latter step is time consuming. On the con-
trary, Bloom filter-based technology just hash each query
in to a bit-vector. The routing table’s size of Bloom filter-
based system is determined by two factors, i.e., the number
of users and the number of queries for each user. The for-
mer determines the number of entries in the routing table;
the latter determines the size of each routing table entry.
Given the two factors, we can compute the size of routing
table. For example, the number of users is 500 and each
user has 1, 000 queries, the routing table’s size is about 610
KB (1000∗10∗500 = 5, 000, 000 bits. A Bloom filter’s size
is 10 times of the number of queries per user). The size of
prefix filters is relatively stable. There are only several dif-
ferent levels prefix filter, and each prefix filter’s size can be
set to a large number for good performance. For example,
we take each prefix filter’s size as 10, 000, 000. The rout-
ing table’s size of automaton-based system is determined
by the number of all queries and the number of common
prefix shared by many queries. According to the method
that we generate simple path queries, further queries will
share common prefix when the number of queries increases.
We get the routing table’s size of automaton-based system
by counting the number of state of the NFA. According to
Figure 9(b), we know that the ratio of (automaton-based /
Bloom filter-based) decreases when the number of queries
increases. When the number of queries is large, there will
be more queries share common prefix. On the contrary, a
Bloom filter must increase its size to keep the probability of
false positive stable.
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Figure 9. Bloom Filter-based Method vs. Automata-based Method

5.4 Filtering XML Packets

In this set of experiments, the filtering performances of
Bloom filter-based and automaton-based are compared. The
metric is the average time of filtering 1, 000 XML packets.

First, we vary the number of users from 100 to 1, 000
with 500 queries for each user, and select proper size of
Bloom filters and number of hash functions to guarantee
the relatively lower false positive. The filtering times of
1, 000 XML packets of depth 3 are shown in Figure 10(a).
It is obviously that the automaton-based method consumes
more time. It is also interesting that the time used by Bloom
filter-based remains relative stable with the growing number
of user. We can get the reason from the process of filtering
XML packets. In automaton-based method, when the num-
ber of users gets larger with the same amount of queries
each, the total number of queries becomes larger. Thus, the
NFA gets larger accordingly. Each XML packet should test
many states to determine whether it is matched or not. Thus
the filtering time increases along with the number of users
greatly. In Bloom filter-based method, as the increasing of
users, the routing table get larger, but the bit-wise operations
are very efficient. Therefore, the increasing size of routing
table will not affect the time of Bloom filter-based much.
We learn that our Bloom filter-based method run more sta-
ble as the increase number of user from this experiment.

Then, we change the depth of XML packets and see the
performance of the two methods for XML packets of dif-
ferent depths. The results are shown in Figure 10(b). The
depth of XML packets varies from 2 to 5. Two sets of
queries are 100 users with 100 queries each and 1, 000 users
with 1, 000 queries each. It is obviously that when the depth
increases the filtering times of two method increase accord-
ingly. In each method the routing time grows with the in-
creasing of number of queries. But the increasing rates of

routing time of the two methods are different. Bloom filter-
based method increases much more rapidly than automaton-
based as the depth goes larger. When the depth of XML
packets is 2 and there are 1, 000 users with 1, 000 queries
each, the filtering time of our method is much smaller than
automaton-based. But when the depth goes to 5, the two
methods take almost the same time. Unluckily, when there
are 100 users with 100 queries each, the routing time of
our method exceeds the automaton-based method when the
depth is bigger than 4. The reason is that when XML pack-
ets get deeper the number of candidate paths becomes much
larger and consumes much filtering time. And the depth has
relatively smaller effects on automaton-based method.

From the above experiments, we get the conclusion that
our Bloom filter-based method use less building routing ta-
ble time and less filtering time when processing millions of
queries and XML packets with relative small depth.

6 Related Work

We compare briefly our work with related approaches
regarding XML query processing, XML filtering and the
use of Bloom filters.

In the context of XML data, XML filtering and XML
stream processing have attracted much research attention.
Lots of works have been proposed for XML filtering and
stream processing[2, 6, 8, 11, 12, 3, 18, 9, 7, 13, 5]. Most
of these works develop their own data structure to repre-
sent multiple path queries, then, input XML documents are
navigated through the data structures for matching. For ex-
ample, XFilter[2] builds a Finite State Machine (FSM) for
each path query and links all the FSMs by a query index.
When an XML document comes, all path queries can be
processed simultaneously. YFilter[8] employs a single Non-
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Deterministic Finite Automaton (NFA) to represent all path
queries by sharing the common prefixes of the paths. In-
coming XML documents drive the execution of the NFA
to produce matched elements. Xtrie[6] devides each path
query into sub-strings that only contain parent-child (“/”)
axis, and indexes all sub-strings by a trie-based data struc-
ture. Therefore, the processing of common sub-strings
can be shared by queries. Index-Filter[5] presents all path
queries as a prefix tree, and builds a position index of ele-
ments for each incoming XML document. Then, the prefix
tree is evaluated on the index for matched elements. In [11],
all path queries are combined into a single DFA. It is more
efficient than Y-Filter when filtering input XML documents,
however, the building time of DFA is more longer than other
data structures. XPush Machine[12] is another similar sys-
tem, which uses a single deterministic pushdown automaton
to present all path queries. Most of above systems compute
results by navigating input XML documents through query
structures element by element. Our Bloom filter-based sys-
tem takes a novel method differing from them. In our sys-
tem, each path query is treated as a query string, and all
query strings of one user are stored in a space-efficient data
structure, a Bloom filter. Input XML documents are parsed
to generate candidate paths. When a candidate path is ap-
proved existing in the Bloom filter, corresponding node path
is routed to the user. Here, the problem of matching path
queries with XML document is converted into a member-
ship problem.

A Bloom filter is a simple space-efficient randomized
data structure for representing a set in order to support
membership queries, which is introduced in the 1970’s[4].
It has been heavily used in various applications, such as
spell check, summary cache, resource routing, logest pre-
fix matching, multicast routing, etc. In the field of database
applications, Bloom filters have been used to implement ef-

ficient join algorithms for distributed query processing[16,
17]. Recently, Bloom filters are used in a Peer-to-Peer
(P2P) network to summarize the content of XML docu-
ments stored on a peer node[14]. Reference [14] aims to
route path queries based on node’s content. It proposes
Multi-level Bloom Filters to maintain information about the
structure of documents on a node. Its multi-level Bloom fil-
ters consists of two types of Bloom filters, Breadth Bloom
Filter (BBF) and Depth Bloom Filter (DBF). All the ele-
ments with depth i in an XML document are stored in a sim-
ple Bloom filter, denoted as BBFi. DBFi is also a simple
Bloom filter, which stores all node paths of length i. Path
queries are evaluated on BBFs and DBFs. Peer nodes in the
network are organized hierarchically by clustering together
nodes with similar content. Similarity between nodes is re-
lated to the similarity between their multi-level Bloom fil-
ters. The top level of the hierarchies are root nodes. When
a path query is issued at a node, it is routed to the nodes
whose documents can match the query. Our work is part
of a routing system such as the system in [19]. The main
difference between [19] and [14] is content being routed. In
[19], each node is an XML router, and XML documents are
routed through the network. Our Bloom filter-based filter-
ing system can work as an XML switch described in [19].
In our work, Bloom filters are used to store path queries in-
stead of XML documents. To gain better performance, we
also use multi-level Bloom filters (Prefix Filters) to store
different length path queries.

7 Conclusions and Future Work

In this paper we introduced a novel technology of filter-
ing XML packets, Bloom filter-based filtering, which can
filter input XML packets approximately with limited false
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positive. It uses a Bloom filter to store all queries of a user,
and uses Prefix Filters structure to decrease the number of
candidate paths. The most important advantage of it is that
the building and maintenance of routing table is faster than
traditional technologies. Experiments show that automaton-
based system takes more times of Bloom filter-based system
when building the routing table. When both the numbers of
users and queries are large, Bloom filter-based filtering is
more efficient than automaton-based for low depth XML
packets.

We plan to extend our work in several directions. First,
because the performance of Bloom filter-based filter system
is not good when the depth of input XML packets is large,
we will devote ourselves to optimization technology for de-
creasing the number of candidate paths. Second, processing
more complex path queries in a Bloom filter-based system
is also a interesting topic. Last, XML packets routing in a
P2P network is also a part of our future work.
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