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ABSTRACT
Content-based dissemination of XML data using the publish-
subscribe paradigm is an effective means to deliver relevant
data to interested data consumers. To meet the performance
challenges of content-based filtering and routing, two key op-
timizations have been developed: the use of efficient indexes
to speed up subscription filtering, and the use of effective
aggregation algorithms to reduce the number of subscrip-
tions. The effectiveness of both these techniques are, how-
ever, limited to locally improving the performance of indi-
vidual routers. In this paper, we propose a novel and holis-
tic optimization approach that allows a downstream router
to leverage the subscription matchings done by upstream
routers to reduce its own filtering work. This is achieved
by piggybacking useful annotations to the XML document
being forwarded. We explore several design options and
tradeoffs of this novel optimization approach. Our experi-
mental results demonstrate that our piggyback optimization
achieves significant performance improvement under various
conditions.

Categories and Subject Descriptors: H.2.4 [Informa-
tion Systems]: Systems - Query processing

General Terms: Algorithms, Design, Performance

Keywords: annotation, data dissemination, piggybacking,
pub/sub system, XML, XPath

1. INTRODUCTION
The ubiquity of XML data and the effectiveness of the

content-based pub/sub-based paradigm [23] of delivering rel-
evant information has led to a lot of interest in content-based
dissemination of XML data (e.g., [8, 12, 11]). In the pub/sub
environment, an overlay network of application-level routers
(or message brokers) is used to asynchronously forward doc-
uments generated by data publishers to relevant data sub-
scribers (or consumers) based on matching the document
contents against the consumers’ subscriptions. Each sub-
scriber first needs to pre-register a subscription to its local
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router, specifying the type of data that he is interested in
receiving. A routing protocol (e.g., [13]) is used to set up
a routing table at each router to record both its local sub-
scriptions as well as the subscriptions from its neighboring
routers. For each document received by a router, the router
compares the document contents against the subscriptions
in its routing table and forwards the document to the match-
ing local subscribers and neighboring routers.

Content-based data dissemination has traditionally been
examined in the context of simple subscription specifica-
tions, such as matching of keywords or conjunction of basic
comparison predicates on attribute values (e.g., [7, 24, 10]).
The recent interest in using the more expressive XPath-
based subscriptions for effective dissemination of XML doc-
uments has increased the complexity of the content-based
subscription matching problem. Thus, there is a even greater
need for effective optimization techniques to meet the per-
formance challenges of content-based dissemination of XML
data. The existing research efforts have focused on two
key optimizations to minimize the number of subscription
matchings. The first optimization, which has attracted the
most attention, is to exploit efficient index structures (e.g.,
[12, 14, 8, 9, 16, 17, 19, 21, 22, 26]) to perform selective
matching with only a small subset of potentially matching
subscriptions. The second optimization uses aggregation al-
gorithms to summarize an initial set of subscriptions into a
smaller set of generalized subscriptions (based on subscrip-
tion containment properties) to reduce the number of sub-
scriptions and the matching overhead [11, 26].

The effectiveness of the existing optimizations are, how-
ever, limited to only locally improving the performance of
the individual routers. Specifically, the fact that routers are
interconnected and related (in terms of the containment re-
lationships of their subscriptions) is not being fully exploited
to optimize the subscription matching.

To appreciate the new optimization opportunities and mo-
tivate our approach, consider how a document D is being
routed from an upstream router Ri to a downstream router
Rj in a typical pub/sub system. On receiving D, Ri parses
and processes D against the set of subscriptions Si stored in
its routing table. Once a matching subscription s ∈ Si (that
is associated with Rj) is detected, Ri then forwards D to Rj .
A similar processing of D is then repeated at Rj but with
the matching now being done against a different set of sub-
scriptions Sj in Rj ’s routing table. Our new optimization
idea is motivated by the following two observations on the
matching and routing process. Firstly, the overall processing
being done at the different routers during the dissemination
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of a document can be viewed as essentially processing the
same data (i.e., XML document) against a sequence of col-
lections of queries (i.e., sets of subscriptions along each path
of forwarding routers). Secondly, the sequence of collections
of queries being processed are not independent as they are
partially related by a “containment property” that deter-
mines whether or not a document is to be forwarded to a
downstream router. Specifically, the sets of subscriptions Si

and Sj are related in that the subscriptions Sj in the down-
stream router are being aggregated (or summarized) into a
smaller set of subscriptions S′j that is stored in the upstream
router Ri’s routing table (i.e., S′j ⊆ Si) such that if a docu-
ment D does not match any of the subscriptions in S′j , then
D will certainly not match any of the subscriptions in Sj

(i.e., S′j is “contained by” by Sj). Consequently, Ri needs
to forward D to Rj only if D matches some subscription in
S′j .

Thus, given that the same document D is being processed
against related sets of subscriptions, each upstream router
Ri can help to optimize the performance of its downstream
router Rj (and thereby reduce the overall processing time
to deliver D to relevant subscribers) by passing along some
useful information to Rj (about D as well as the about re-
lated queries that Ri has processed) when it forwards D to
Rj . Rj can then try to exploit the hints that it receives
from Ri to optimize its own processing of D. There are
two key ways that a downstream router Rj can optimize its
processing and matching of D by exploiting additional hint
information from its upstream router Ri:

1. The hint could enable Rj to quickly determine that
D be forwarded to a downstream router Rk without
requiring Rj to parse and process D.

2. The hint could enable Rj to quickly detect that a por-
tion S′j ⊆ Sj of the subscriptions in Rj ’s routing table
are guaranteed not to match D, and Rj can therefore
speed up its matching of D against the smaller set
(Sj − S′j) instead of Sj .

We illustrate the above optimization opportunities with
the following two examples.

Example 1.1 Consider the following routing of a document
D among three routers (Ri, Rj , and Rk), where D is first
forwarded from Ri to Rj due to a matching subscription
/a//d ∈ Si (that is associated with Rj); and then D is then
forwarded from Rj to Rk due to a matching subscription
/a/b/c/d ∈ Sj (that is associated with Rk). Observe that
if Ri had forwarded to Rj (along with D) the additional
information on the data bindings for the matching subscrip-
tion /a//d ∈ Si; i.e., that the wildcard “//” in /a//d actu-
ally matches the data path “b/c” in D, then Rj could have
very efficiently determined that D matches the subscription
/a/b/c/d ∈ Sj without actually having to parse and process
D against the subscriptions in Sj . In this way, Rj is able
to speed up the forwarding of D to Rk and thereby reduce
the overall processing time to disseminate D to relevant sub-
scribers. 2

Example 1.2 Consider the scenario where a router Ri needs
to forward a document D to its downstream router Rj , and
that after having parsed and processed D against Si, Ri has
obtained the following information about D and Si: (H1)
D does not match some subscription s ∈ Si that is associ-
ated with Rj ; (H2) the data pattern “x/y/z” occurs in D

with its last occurrence located at some position p within
D; and (H3) the data pattern “a/b/c” does not occur at
all in D. Observe that each of these three pieces of infor-
mation could be forwarded to Rj as hints to optimize the
performance of Rj . For (H1), Rj can use the non-matching
subscription s ∈ Si to identify the subset of subscriptions
S′j ⊆ Sj in Rj that were aggregated to s (i.e., subscriptions
that are guaranteed to not match D), and exclude matching
D against such subscriptions to improve the matching per-
formance. For (H2), once Rj has parsed D beyond position
p, Rj can conclude that there will not be any new matches
of subscriptions that contain the data pattern x/y/z, and
therefore such subscriptions can be excluded from further
matching and processing. Finally, (H3) can be treated as a
special case of (H2) with p being at the starting position of
the document D. Thus, Rj can ignore matching D against
the subscriptions in Sj that contain the data pattern a/b/c/
right at the beginning of D. 2

In this paper, we propose an orthogonal and holistic opti-
mization that enables a downstream router to leverage the
subscription matching work completed by upstream routers
to optimize its own performance. To facilitate such “collab-
orative” processing, a router is allowed to piggyback some
additional useful information (that is derived from its sub-
scription processing) as header annotations to an XML doc-
ument before forwarding it to a downstream router. On re-
ceiving an annotated document, a router first pre-processes
the header annotations to check if the hints specified in the
annotations could enable any immediate forwarding deci-
sions (without processing the document) or if they could
be used to reduce the effective number of subscriptions in
its router table that need to be matched against the docu-
ment. We refer to this approach to optimize performance as
piggyback optimization.

Note that this new optimization could be used in combi-
nation with the existing optimizations proposed for pub/sub
systems (i.e., subscription indexing and aggregation).

There are three key design issues to be addressed for our
piggyback optimization approach:

1. What type of information is useful to piggyback?

2. How can such information be efficiently computed by a
forwarding router and exploited by a receiving router?

3. How does this optimization impact the data match-
ing protocol (i.e., when a router Ri detects that some
subscription corresponding to a downstream router Rj

matches a document D, should Ri forward D imme-
diately to Rj? And should Ri continue matching D
against other subscriptions related to Rj?)

As there are many possible types of hints that could be for-
warded along with a document, forwarding too much hints
could increase both the transmission cost as well as the
overhead of pre-processing the hints and thereby possibly
negating the potential performance improvements. Thus,
the hints need to be selected judiciously to balance these
tradeoffs. Intuitively, a hint is preferred if it is more likely
to be beneficial and can be efficiently computed by the up-
stream router and exploited by the downstream router.

In this paper, we examine and evaluate several design op-
tions for piggyback optimization. Our experimental study
demonstrates that our proposed piggyback optimization is
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Figure 1: XPath Subscriptions, XML Document, and Routing Tables

indeed a feasible and effective technique to improve the per-
formance of content-based dissemination of XML data. In
particular, our results show that the overhead of creating
and preprocessing annotations is low relative to the perfor-
mance improvement obtained from minimizing the number
of subscription matchings using the annotated information.
Our results indicate that the piggyback optimization is ef-
fective to improve the performance at various conditions,
especially when the matching occurs at the late part of the
document, the performance is improved by a factor of 2.

Contributions. The key contributions of this paper in-
clude: (1) the proposal of a novel, holistic optimization
technique for XML data dissemination called piggyback opti-
mization that enables upstream routers to pass useful hints
(in the form of document header annotations) to optimize
the performance of downstream routers. This new optimiza-
tion is orthogonal to the existing indexing and subscrip-
tion aggregation optimizations; (2) a thorough study of the
design options and issues for piggyback optimization; and
(3) a comprehensive experimental performance evaluation
demonstrating the efficiency of piggyback optimization.

Organization. The rest of this paper is organized as fol-
lows. Section 2 presents further background and introduces
terminologies and notations. Section 3 presents our piggy-
back optimization technique. We discuss the mechanism to
generate the annotations in Section 4 and the approach to
process the annotated document in Section 5. Section 6
presents experimental results, and related work is discussed
in Section 7. We conclude our paper in Section 8.

2. BACKGROUND AND NOTATIONS
In this section, we provide some further background on

content-based XML dissemination and introduce some re-
lated terminologies and notations.

Pub/Sub systems. In a pub/sub environment, each data
consumer registers his subscription to his local router. In or-
der for a router to know about subscriptions that have been
registered with other routers, a routing protocol is used by
the routers in the overlay network to exchange subscription
information so that their subscription tables are set up cor-
rectly to establish routing paths for forwarding documents.

We use Ri to denote a router, and Ti to denote the set of
subscription entries in its routing table (refer to Fig. 1(c)).

Conceptually, each entry in Ti is of the form (Sj , pj), where
Sj denotes a set of subscriptions and pj denotes a unique
identifier that refers to either a local subscriber of Ri or
a neighboring router of Ri. For a given document D, we
use S+

j (D) and S−j (D) to denote, respectively, the subset
of subscriptions in Sj that matched and did not match D
(i.e., Sj = S+

j (D) ∪ S−j (D)). For each incoming document

D to Ri, Ri will forward D to pj if and only if S+
j (D) is

non-empty.
If a router Ri forwards some document to a neighboring

router Rj , we call Ri an upstream router and Rj a down-
stream router. In order for any document to be forwarded
from an upstream router Ri to a downstream router Rj , Rj

needs to have advertised (via some routing policy) its collec-
tion of subscriptions (i.e., Uj =

S
(S,p)∈Tj

S) to Ri so that

an entry (Uj , Rj) can be recorded in Ti.

XPath subscriptions. Subscriptions on XML data are
typically specified using the expressive XPath-based pat-
terns [25]. In this paper, we focus on a commonly used
and expressive fragment of XPath that uses only the child
(“/”) and descendant (“//”) axes. The node test for each
XPath step can be either an element name or a wildcard
“*”. Nested XPath expressions are also allowed as predi-
cates. Fig. 1(a) gives some sample XPath expressions.

Subscription aggregation. Since the entire collection of
subscriptions in Ri (i.e., Ui =

S
(S,p)∈Ti

S) is generally large,

Ri needs to summarize (or aggregate) Ui to a smaller set
S ′i of aggregated subscriptions before advertising it to its
neighboring routers. To preserve forwarding correctness, S ′i
needs to satisfy the following containment property w.r.t.
Ui: for every document D, if D matches some subscription
s ∈ Ui, then there must exist some subscription s′ ∈ S ′i
such that D also matches s′. We say that S ′i contains Ui

(or Ui is contained by S ′i), denoted by Ui v S ′i. Similarly,
we say that a subscription s′ contains another subscription
s, denoted by s v s′, if {s} v {s′}. The importance of
the containment property (i.e., Ui v S ′i) is that using S ′i in
place of Ui for document matching will guarantee that there
are no false negatives (i.e., documents not being forwarded
when they should); however, false positives can arise (i.e.,
documents being forwarded when they need not) which are
tolerable and do not compromise correctness.

Several algorithms (e.g., [11, 26]) have been developed to
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aggregate a set of subscriptions S into a smaller set S′ such
that S v S′, and they are all formulated (at a high level)
in terms of the following two steps: first, partition S into
a collection of disjoint subsets S1, · · · , Sm, where m < |S|;
next, aggregate each Si into a single subscription s′i (i.e.,
Si v {s′i}) to obtain S′ = {s′1, · · · , s′m} with the properties
that S v S′ and |S′| < |S|. In addition, to ensure that the
aggregated subscriptions are space-efficient, a space bound
is generally impose on S′ to limit the total number of query
steps among all the queries in S′.

For each of the subscriptions s ∈ Si, Si v S′, that be-
comes aggregated to s′i ∈ S′ (i.e., s v s′i), we refer to s as
an aggregating subscription, and refer to s′i as an aggregated
subscription of s. A subscription s′ is said to be a simple
aggregated subscription of another subscription s (or s is a
simple aggregating subscription of s′) if (1) s v s′, and (2)
s′ can be made to match s by simply substituting each wild-
card (i.e., * and //) in s′ with some path of data element
names.

Example 2.1 Consider the set of XPath expressions S =
{s1, s2, s3, s4} in Fig. 1(a). One way to aggregate S into
a smaller set is to first partition S into two subsets S1 =
{s1, s2} and S2 = {s3, s4}; followed by aggregating S1 and
S2, respectively, into s5 and s6 as shown in Fig. 1(a). It can
be verified that S1 v {s5} and S2 v {s6}. We say that s5

and s6 are, respectively, the aggregated subscriptions of S1

and S2; and the subscriptions in S1 and S2 are aggregating
subscriptions. Note that s6 is a simple aggregated subscrip-
tion of s3 (by substituting the * and // in s6, respectively,
with elements b and e), but s6 is not a simple aggregated
subscription of s4 (since no substitution in s6 can create the
path d/m in s4). 2

3. PIGGYBACK OPTIMIZATION
In this section, we present a novel approach to optimize

the subscription matchings at a router. Our technique,
which we termed piggyback optimization, is orthogonal to
the two existing optimizations, namely, indexing techniques
and subscription aggregation algorithms, that are also tar-
geted at improving the routers’ performance.

As motivated in the introduction, the central idea behind
piggyback optimization is to optimize the performance of
a router by leveraging information from the work done by
its upstream router. This is possible because both the up-
stream and downstream routers are processing the same doc-
ument against subscriptions that are partially related (due
to subscription containment relationships). Thus, an up-
stream router could pass to its downstream router some use-
ful hints (along with the document being forwarded) about
properties of the document and/or matching/non-matching
subscriptions that it has encountered to enable the down-
stream router to optimize its performance by expediting the
forwarding of the document (without processing the docu-
ment) and/or speeding up its subscription matching process.

In our proposed piggyback optimization, the hints from an
upstream router are disseminated to its downstream router
in the form of header annotations in the document. On
receiving an annotated document, a router will first pre-
process the header annotations to optimize the subsequent
processing of the document. There are three key design
issues that need to be addressed for our piggyback opti-
mization approach: (1) What type of information is useful

Subscription Data

Positive Data bindings for
matching subscrip-
tions

Positions of last occur-
rences of data patterns

Negative Non-matching sub-
scriptions

Non-occurring data
patterns

Figure 2: Types of Annotations

to piggyback? (2) How can such information be efficiently
computed by an upstream router and exploited by its down-
stream router? (3) How does this optimization impact the
matching protocol?

In this paper, we use Ai,j to denote the header annotations
that an upstream router Ri adds to a document D before
forwarding it to a downstream router Rj . The annotated
document that Rj receives from Ri is denoted by (D, Ai,j).

3.1 Types of annotations
The first key issue for the piggyback optimization tech-

nique is to decide on what types of information to include
in the header annotation of a document to optimize perfor-
mance. Our design of the annotated information is guided
by three performance-related requirements. Firstly, it should
be concise so that it incurs minimal processing overhead in
terms of parsing and transmitting the additional header in-
formation. Secondly, it should be efficiently generated so
that the computation overhead incurred by the upstream
router does not offset any performance gains of its down-
stream routers. Thirdly, it should be effective in that a
downstream router can efficiently preprocess the annota-
tions to optimize its subscription matching performance.

Let us consider the possible sources of useful information
that an upstream router Ri can pass on to a downstream
router Rj along with a document D that needs to be for-
warded to Rj .

After having matched its own subscriptions against D, Ri

has acquired additional information about D and how its
subscriptions are related to D. We can classify this knowl-
edge into positive and negative information:

• Positive information refers to information about (a)
subscriptions in Ti that matched D, and (b) patterns
/ properties that occur in D.

• Negative information refers to information about (a)
subscriptions in Ti that did not match D, and (b) pat-
terns/properties that did not occur in D.

We shall refer to the annotations of these two types of in-
formation as positive annotations and negative annotations.

In the following, we identify two types of positive anno-
tations (PS and PD) and two types of negative annotations
(NS and ND), which are classified in Figure 2. The emphasis
of the discussion in this section is on the ideas; we address
the implementation issues in Section 4.

3.1.1 Positive annotations
A positive annotation specifies information related to ei-

ther (1) a matching subscription or (2) a data pattern that
occurs in the document. Subscription-related information
could be used to expedite a document forwarding decision
without having to process the document itself, while data-
related information could be used to reduce the effective
number of subscriptions that need to be matched.
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Positive subscription (PS). A PS annotation is of the
form (sx, Bx), where sx is some subscription detected by
Ri to match D (i.e., sx ∈ Sj , (Sj , Rj) ∈ Ti), such that sx

is a simple aggregated subscription of some subscription in
Tj ; and Bx is the set of pairs (l, p) such that l specifies the
position of a wildcard (i.e., * and //) in sx and the p is
the binding of that wildcard corresponding to the detected
matching. Thus, a PS annotation essentially specifies a data
pattern in D that matches some subscription in Ti. Such
an annotation can benefit Rj if the specified data pattern
also matches some subscription sy in Tj that aggregates to
sx. When this happens, Rj can very quickly detect that D
matches sy (from processing Ai,j) without having to actually
process D (which is more costly to process than Ai,j). Rj

can then immediately forward D to the relevant downstream
router.

Example 3.1 Continuing with Example 2.1, consider the
processing of the document D in Fig. 1(b) by the router
R1, which has two immediate downstream routers R2 and
R3. R1 first detects that D matches the subscription s6

with the wildcard * and // in s6 matching data elements
b and e in D, respectively. R1 then adds the PS anno-
tation (s6, {(1, b), (2, e)}) into A1,3 and forwards the anno-
tated document (D, A1,3) to R3. Next, R1 detects that D
also matches the subscription s5 with the * in s5 match-
ing the data element x. R1 then adds the PS annotation
(s5, {(1, x)}) into A1,2 and forwards (D, A1,2) to R2. On
receiving (D, A1,3), R3 will first check whether any of the
aggregating subscriptions for s6 (i.e., s3 and s4) matches s6

with the bindings {(1, b), (2, e)}. In this case, there is in-
deed a matching for the subscription s3. Thus, R3 can very
quickly forward D to the router R6 without having to scan
and process D. On the hand, when R2 receives (D, A1,2),
none of the subscriptions in R2 (i.e., s1 and s2) matches the
PS (s5, {(1, x)}) in (D, A1,2). In this case, R2 needs to scan
and process D before detecting that s1 matches D. Note
that if R1 had created a PS for the second matching of s5 in
D as well, R2 would have been able to detect the matching
of s1 earlier without having to process D. 2

Positive data (PD). The purpose of a PD annotation is to
specify some useful property about the data D that can po-
tentially be exploited by a downstream router Rj to skip the
matching of some of its subscriptions in Tj thereby reducing
Rj ’s processing overhead.

In this paper, we use a simple PD of the form (p, l), where
p = e1/e2/ · · · /em refers to a path of element names that
exists in D, and l refers to the position of the last occur-
rence of p in D. Here, the position information l means that
the end-tag of the element e1 in the last occurrence of p is
lth end-tag in D. To see how a PD (p, l) can be exploited,
suppose Ri has just completed parsing the subtree of data
elements rooted at the lth element in D, then Ri can safely
ignore all of the subscriptions that contain the pattern p
from further processing since such subscriptions are guaran-
teed not to match the remaining yet-to-be-processed portion
of D. This subscription pruning optimization can improve
performance particularly if the location l is early or if there
are many subscriptions in Ti that contain p.

3.1.2 Negative annotations
The main idea behind negative annotations is to identify

the set of subscriptions in the downstream router that are

guaranteed not to match the document D being forwarded.
In this way, the downstream router can optimize its per-
formance by eliminating the need to compare against such
subscriptions against D.

Negative subscription (NS). The NS annotation for a
downstream router Rj (w.r.t. D) is a list of the identities of
all the non-matching subscriptions in Sj (i.e., S−j (D)). This
information can be exploited by Rj to skip the matching
of all the aggregating subscriptions that were aggregated to
S−j (D). Specifically, for each subscription s in Tj , if s is
an aggregating subscription of an aggregated subscription
s′ ∈ S−j (D) (i.e., s v s′), then by the containment property,

the fact that D did not match s′ at Ri necessarily implies
that D will not match s at Rj . Thus, the matching of s
against D at Rj is redundant and can be skipped without
affecting correctness.

Negative data (ND). Besides using non-matching aggre-
gated subscriptions to skip the matching of corresponding
aggregating subscriptions, a more general approach to en-
able a similar optimization is to exploit the absence of cer-
tain data patterns in D to skip the matching of all sub-
scriptions in Rj that contain such patterns. As an example,
if Ri knows that D does not contain the path of elements
p = A/B, this negative information can be beneficial to Rj

if there is a large collection Cp of subscriptions in Tj that
contain such a pattern p. By similar reasoning using the
containment property, Rj can safely skip the matching of
the subscriptions in Cp. In this paper, we use simple data
patterns in the form of linear paths of element names for
ND annotations.

3.2 Impact on Matching Protocol
The matching protocol of a router Ri refers to the two key

decisions that Ri makes when it detects that some subscrip-
tion corresponding to a downstream router Rj matches D.
The first deals with whether Ri should forward D immedi-
ately to Rj ; and the second deals with whether Ri should
continue matching D against other subscriptions related to
Rj .

In this section, we discuss the impact of piggyback opti-
mization on the options for the matching protocol.

3.2.1 Eager forwarding with skipping (ES)
For routers in conventional pub/sub systems (without pig-

gyback optimization), the matching protocol adopted is that
when a document D is detected at an upstream router Ri to
match some subscription associated with some downstream
router Rj , Ri will immediately forward D to Rj and skips
the matching of subscriptions associated with Rj . Forward-
ing a document as soon as possible helps to improve re-
sponse time, while skipping unnecessary subscription match-
ings helps to reduce the processing overhead. We refer to
this conventional protocol as eager forwarding with skipping
(denoted by ES).

3.2.2 Lazy forwarding without skipping (L)
The conventional ES approach of forwarding D to a down-

stream router Rj as soon as a subscription matching for Rj

is detected generally occurs when D has not been completely
processed. The eager forwarding protocol has two implica-
tions with regards to the use of annotations. First, negative
annotations cannot be included in the forwarded document;
and second, only limited PS annotations (derived from the
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processed portion of D) can be used. Given that negative
annotations could potentially help to skip a large number
of subscriptions in Rj and PS annotations could enable a
document to be forwarded quickly without processing the
document, it might actually be beneficial to delay the for-
warding of D to Rj until D has been completely processed at
Ri. Clearly, for this “lazy” forwarding protocol to generate
additional annotations for a matching downstream router
Rj , it is necessary for Ri to continue matching D against
the subscriptions that correspond to Rj . We refer to this
protocol as lazy forwarding without skipping (denoted by L).

There is a performance tradeoff between the ES and L
protocols. On the one hand, by forwarding D immediately
to a downstream router, ES can help to reduce the response
time of delivering a document to matching data consumers.
On the other hand, by delaying the forwarding to generate
both negative as well as complete PS annotations, L can
potentially minimize the matching cost at each downstream
router by (1) using negative annotations to skip the process-
ing of many subscriptions, and (2) using PS annotations to
enable D to be quickly forwarded without having to first
parse D. L is particularly cost-effective if at the time a sub-
scription matching is detected at Ri, only a small proportion
of D has not been processed.

3.3 Combining annotations and protocols
Based on the preceding discussion, the design space of

our piggyback optimization consists of four basic annota-
tion types (PS, PD, NS, and ND) and two matching proto-
cols (ES and L). A data dissemination strategy is formed by
choosing a subset of annotation types together with a match-
ing protocol. We use P α

β to denote a dissemination strategy,
where P ∈ {ES, L} refers to the matching protocol used;
α ⊆ {+s, +d} refers to the set of positive annotations used;
and β ⊆ {−s,−d} refers to the set of negative annotations
used. Here, +s, +d, −s, and −d denote, respectively, PS,
PD, NS, and ND annotations. For conciseness, we use +sd
(resp., −sd) to represent {+s, +d} (resp., {−s,−d}); more-
over, an empty set value is simply represented by a blank,
and a singleton value {x} is abbreviated to x. For example,
the conventional dissemination strategy is denoted by ES ;
and a strategy that uses lazy forwarding with PS, PD, and
ND annotations is denoted by L+sd

−d .
Note that it is not meaningful to have a dissemination

strategy that involves some negative annotation type to-
gether with the ES policy. This is because negative an-
notations cannot be added to D if it is eagerly forwarded
when the processing of D has not completed. Therefore, in
this paper, we do not consider dissemination strategies ESα

β

with β 6= ∅.

4. GENERATING ANNOTATIONS
In this section, we discuss the details of how an upstream

router Ri computes the various annotations (i.e., Ai,j) for
a data D to be forwarded to a downstream router Rj . Ex-
cept for NS annotations, all the other annotations in Ai,j

can be created more effectively if they exploit knowledge of
the subscriptions in the downstream router Rj . To achieve
this, our approach generates PS, PD, and ND annotations in
two steps, referred to as the offline step and online step. The
offline step is performed only once as part of the routing pro-
tocol to set up the routing tables in the routers. Specifically,
when a downstream router Rj is advertising its aggregated

subscriptions to each of its upstream routers, we also make
use of this opportunity to transmit some useful informa-
tion that is derived from Rj ’s subscriptions to the upstream
routers. This derived information from Rj will be stored by
the upstream routers and used to create annotations in the
online step for documents that are forwarded to Rj . The
online step is performed by an upstream router each time it
needs to forward a document to some downstream router.

In general, since there are many possible options for each
annotation type, we devise a benefit metric for each anno-
tation type to enable the effectiveness of annotations to be
compared so that a reasonably small set of beneficial an-
notations can be judiciously selected (for inclusion in the
document header) that both maximizes the performance
improvement for the downstream router as well as ensures
transmission efficiency.

In the following subsections,we describe, for each of the
four annotation types, the benefit metric used to select an-
notations and how the annotations are created.

4.1 Positive subscription (PS)
Intuitively, a PS annotation (s, B) is beneficial for a down-

stream router Rj if s is a simple aggregated subscription of
many subscriptions in Rj as this increases the chance that
the pattern specified by (s, B) matches a subscription in Rj .
On the other hand, it is also desirable for the size of the bind-
ing B to be small so that the annotation is space-efficient.
We therefore define the benefit of using a subscription s for

a PS annotation in Ai,j to be benefit(s) = |S′|P
i∈w(s) size(i)

where S′ is the set of simple aggregating subscriptions of s
in Rj , w(s) is the set of the wildcards in s, and size(i) is
size of binding values for the ith wildcard of s. Note that
a subscription s has no benefit if S′ = ∅. Ri will select the
most beneficial PS annotations based on the above metric.

PS annotations to be included in Ai,j are computed in
two steps. In the offline step, Rj will identify a set of candi-
date subscriptions that can be used for PS annotations and
advertise these candidates to Ri. In the online step, when-
ever Ri needs to forward a document to Rj , Ri will create
PS annotations from a subset of these candidates by adding
relevant data bindings.

More specifically, in the offline step, after Rj has aggre-
gated its subscriptions, Rj derives the information (s, |S′|,
l) for each simple aggregated subscription s computed by
Rj , where S′ is the subset of subscriptions in Rj that was
aggregated to s such that s is a simple aggregated subscrip-
tion of each subscription in S′ (defined in Section 2); and l
is a list of wildcard positions indicating which of the wild-
cards (// and *) in s need to be instantiated with data path
bindings to match some aggregating subscription in S′.

Example 4.1 Consider the example in Fig. 3, where the
6 subscriptions in Rj are partitioned into three sets: S1 =
{s1, s2}, S2 = {s3, s4}, and S3 = {s5, s6}, which are ag-
gregated, respectively, into s′1, s′2, and s′3. And for sim-
ple aggregated subscriptions s′1 and s′3, S′1 = {s1, s2} and
S′3 = {s5}. The derived information generated by Rj in the
offline step for these aggregations are shown as i1, i2, and i3
in Fig. 3. Observe that i1 = (s′1, |S′1|, l1), where |S′1| = 2 and
l1 = {2} indicating that only the second wildcard (i.e., *)
requires a data binding; however, the first wildcard (i.e., //)
does not require a data binding to transform s to any of the
subscriptions in S. On the other hand, since s′3 is the simple
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Figure 3: Generating & Processing Annotations

aggregated subscription of only s5 ∈ S′3, i3 = (s′3, |S′3|, l3),
where |S′3| = 1 and l3 = {1, 2}. 2

The collection of derived information (s, |S′|, l) will be
passed to upstream routers of Rj when Rj advertises its
aggregated subscriptions to them. In the online step, when
an upstream router Ri detects a matching subscription s
(associated with downstream router Rj) while matching a
document D, Ri will first compare s against the derived
information from Rj to determine whether s could form a
candidate PS annotation.

Example 4.2 Continuing with Example 4.1, suppose that
Ri in Fig. 3 is processing the document D from Fig. 1(b).
When Ri detects that subscription s′1 matches the data
/b/a/x/c in D, Ri uses the derived information i1 = (//a/∗
/c, 2, {2}) to create the PS annotation (s′1, {(2, x)}) for s′1.
Based on i1, Ri knows that only the second wildcard in s′1
requires a data binding. On further processing D, Ri detects
that subscription s′3 matches D and creates the PS annota-
tion (s′3, {(1, b), (2, e)}) for this matching. Fig. 3 shows the
scenario where Ri is forwarding all these PS annotations to
Rj along with D (indicated by the shaded box). 2

4.2 Positive data (PD)
A PD annotation (p, l) is beneficial for Rj if p is contained

by many subscriptions in Tj and the value of l is small so
that Rj can skip many of its subscriptions after processing
only a small portion of D. We therefore define the benefit

of a pattern p to be freq(p)
pos(p)

, where freq(p) represents the

number of subscriptions in Tj that contain p; and pos(p)
represents the position of the last occurrence of p in D. Ri

then selects a subset of the PD annotations of the form
(p, pos(p)) that have the highest benefit values.

PD annotations are also computed in two steps. In the
offline step, Rj advertises to Ri a small set of beneficial data
patterns Pj (together with their frequencies) derived from
the subscriptions in Tj . Rj selects data patterns to be in-
cluded in Pj based on the following benefit metric for a data
pattern p: benefit(p) = freq(p) · ln(l(p)+1), where freq(p)
represents the number of subscriptions in Tj that contain p;
and l(p) represents the length of the linear pattern p. The
function ln(l(p)+1) provides an approximate measure of the
probability that the last appearance of p occurs early in the
document. In the online step, an upstream Ri keeps track of
pos(p) for each pattern p ∈ Pj as it processes D. With the
freq(.) information from Rj and the pos(.) information that

it derives, Ri can approximately select the most beneficial
PD annotations for Ai,j .

Example 4.3 Consider again the example in Fig. 3 which
shows that Rj is advertising three candidate data patterns
p1, p2 and p3 (along with their frequencies) to Ri for possible
use as PD annotations. In the online step, after Ri has
completed processing D (from Fig. 1(b)), Ri detects that
pos(p3) = 4 (note that there is no occurrence of p1 and p2

in D). It decides to create the PD annotation (p3, 4) and
forwards it to Rj . 2

4.3 Negative subscription (NS)
An NS annotation is a subscription s ∈ Ti that did not

match D; and it is more beneficial to Rj if there are more
subscriptions in Tj that aggregate to s as it enables Rj to
skip the processing of a larger number of subscriptions. The
benefit of each s ∈ Ti is therefore defined to be the number
of subscriptions in Tj that aggregates to s. NS annotations
are computed in two steps. In the offline step, Rj notifies to
its upstream router Ri the number of its subscriptions that
aggregate to each aggregated subscription. While processing
a document D during the online step, Ri selects from among
the subscriptions in Ti that did not match D, the subset with
the highest benefit values as NS annotations. However, as
the total number of subscriptions is generally not too large,
all the non-matching subscriptions can be specified concisely
and precisely using a bitstring with each subscription repre-
sented by a single bit such that the bit is turned on if and
only if the subscription is non-matching.

4.4 Negative data (ND)
An ND annotation is of the form of a linear data pat-

tern p that is absent in D. Intuitively, a data pattern p is
more beneficial to Rj if there are more subscriptions in Tj

that contain p and the probability of p’s occurrence in D
is low. In fact, ND annotations can be viewed as a special
case of PD annotations with pos(p) = 0. Thus, we can use
the same metric freq(p) · ln(l(p)+1) (defined in Section 4.2
for PD annotations) to compare the benefit of different ND
annotations. The generation of ND annotations in Ai,j fol-
lows a similar two-step process, where Ri advertises to Rj

a set of candidate data patterns during the offline step; and
during the online step, Ri keeps track of the candidate pat-
terns that did not occur in the document being processed,
and concisely represent the non-matching data patterns as
a bitstring in the ND annotations.
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Example 4.4 After Ri in Fig. 3 has processed the document
D from Fig. 1(b), Ri detects that D did not match the
subscription s′2 and that the data patterns p1 and p2 did
not occur in D. Thus, Ri can create the ND annotation 001
and the NS annotation 101 for Rj . 2

5. PROCESSING ANNOTATED DOCUMENTS
In this section, we describe the details of how a router Rj

processes an annotated document (D, Ai,j) that it receives
from some upstream router Ri.

To efficiently and effectively process annotations in an
annotated document (D, Ai,j), each downstream router Rj

maintains the following information:

Aggregation Table, Tagg. For each aggregated subscrip-
tion s′ generated by Rj , Tagg(s′) stores the set of aggregating
subscriptions of s′.

Simple Aggregation Table, Tsagg. For each aggregated
subscription s′ generated by Rj , if s′ is also a simple aggre-
gated subscription, Tsagg(s′) stores the set of pairs (s, P ),
where s is a simple aggregating subscription of s′. P is a set
of pairs (li, pi), where li specifies the position of a wildcard
in s′ and pi specifies a data pattern binding such that if for
each (li, pi) ∈ P , the lth wildcard in s′ is replaced by the
pattern pi, then the transformed s′ will match s.

Pattern Table, Tpat. For each data pattern p that Rj has
advertised to its upstream routers during the offline step
for PD or ND annotations, Tpat(p) stores the subset of sub-
scriptions in Rj that contains p such that if a document D
does not match p, then D also does not match any of the
subscriptions in Tpat(p).

Non-Matching Array, Anot. Anot is a bit-array of size
equal to the number of subscriptions in Rj such that the ith

bit corresponds to the ith subscription in Rj . Each Anot[i]
is initialized to zero at the start when Rj receives D, which
could be set to one as Rj processes the annotations and D.
Specifically, Anot[i] is set to one if and only if the ith sub-
scription in Rj is guaranteed not to match the document D
being processed. Rj uses Anot to optimize its processing of
D by skipping the processing of subscriptions that indicated
by Anot to be guaranteed to not match D.

Fig. 3 shows all the tables maintained at Rj for the six
subscriptions. Note that all the tables Tagg, Tsagg and Tpat

are created only once in the offline step after Rj has adver-
tised his aggregated subscriptions and derived information
to its upstream routers. These tables remained static unless
there are changes to the subscriptions in Rj . The bit-array
Anot is the only structure that needs to be initialized and
updated for each document that Rj processes.

5.1 Processing AnnotationsAi,j

We are now ready to explain how Rj processes an anno-
tated document (D, Ai,j) that it receives from Ri using the
following four steps.

Step 1: Processing PS Annotations. For each PS an-
notation (s′, B) ∈ Ai,j , Rj compares (s′, B) against each
(s, P ) ∈ Tsagg(s′). If for each pair (li, pi) ∈ P , there exists
a pair (l′i, p

′
i) ∈ B such that li = l′i and pi matches p′i, then D

is detected to match subscription s and Rj can immediately
forward D to the downstream router (say Rk) associated
with subscription s without the need to first process D1.
1Note that the immediate forwarding due to a matching

Since Rj has not yet processed D, Aj,k needs to be derived
from Ai,j ; the details are described in Section 5.3.

Example 5.1 Suppose that Rj has just received from Ri the
annotated document (D, Ai,j) (indicated by the shaded box
in Fig. 3) and is processing the PS annotations. For the PS
annotation PS1 = (s′3, {(1, b), (2, e)}) ∈ Ai,j in which B =
{(1, b), (2, e)}, Rj will process PS1 against each (s, P ) ∈
Tsagg(s′3). For the tuple s = s5 and P = {(1, /b), (2, /e)}
∈ Tsagg(s′3), Rj detects that it matches PS1 since for (1, /b)
∈ P there exists a pair (1, b) ∈ B such that b matches /b; and
for (2, /e) ∈ P , there exists the pair (2, e) ∈ B and e matches
/e. Thus Rj knows D matches s5 without processing D. 2

Step 2: Processing NS Annotations. For each NS an-
notation s′ ∈ Ai,j , Rj knows that D will not match any of
the subscriptions in Tagg(s′). Rj therefore updates Anot[i]
to one for each aggregating subscription si ∈ Tagg(s′).

Step 3: Processing ND Annotations. For each ND
annotation p ∈ Ai,j , Rj knows that D will not match any
of the subscriptions in Tpat(p). Rj therefore updates Anot[i]
to one for each subscription si ∈ Tpat(p).

Step 4: Processing PD Annotations & D. For each
PD annotation (p, `) ∈ Ai,j , Rj will dynamically process
each of them (in ascending order of their positions `) as
part of its processing of D. Specifically, if Rj has completed
parsing some data element in D at position ` and (p, `) is the
next-to-be-processed PD annotation, then Rj knows that
the data pattern p will not occur in the remaining portion
of D, and that it is redundant to process any new matchings
of subscriptions in Tpat(p). Therefore, Rj updates Anot[i] to
one for each subscription si ∈ Tpat(p).

5.2 Processing DocumentD
Based on the preceding discussion, Rj processes all the

PS, NS, and ND annotations before it begins to process D
(steps 1-3). In some situations (step 1), it is even possible
for Rj to forward D to another downstream router with-
out having to process D at all. The PD annotations are
processed (step 4) along with the normal processing of D.

When Rj detects that D matches some subscription (Sk,
Rk) ∈ Tj , there are two cases to consider. If the dissemina-
tion strategy used is the ES matching protocol, then Rj will
generate the appropriate annotations for Aj,k (depending on
the annotation types being used) and forward (D, Aj,k) to
Rk. Moreover, Rj will also skip all subscriptions associated
with Rk from further matching as it continues to process D;
this is achieved by setting the appropriate bits in Anot to
one. Otherwise, if the dissemination strategy in use is the L
matching protocol, then Rj will only forward D to Rk (with
appropriate Aj,k) after it has completely processed D.

5.3 Deriving Negative Annotations
In this section, we consider the scenario where Rj is going

to forward D to a downstream router Rk without having
yet completed processing the entire document D. An issue
that arises from this situation is what are the possible neg-
ative annotations (if any) that Rj can include in Aj,k given
that Rj has not processed some portion of D. Observe that
Rj cannot arbitrarily include a subscription s that has not
matched the processed portion of D as an NS annotation

in Ai,j is independent of the forwarding policy being used
which applies when there is a matching in D.
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since s could potentially have matched D if Rj has processed
D completely.

It turns out that Rj can actually derive some limited types
of negative annotations for Aj,k: (1)for each NS annota-
tion s′ ∈ Ai,j , Rj can identify the subset of subscriptions
Sk ⊆ Tagg(s′) that are associated with Rk. Thus, the sub-
scriptions in Sk can be included as NS annotations in Aj,k;
(2)the ND annotations in Ai,j can be directly inherited as
ND annotations in Aj,k. However, since the inherited anno-
tations are not specifically optimized for Rk using derived
information from Rk, they are generally less beneficial than
the customized ND annotations.

6. PERFORMANCE STUDY
To verify the effectiveness of our proposed annotations in

content-based dissemination of XML data, we conducted ex-
tensive experiments to compare the performance of various
dissemination strategies. Our results show that the dissem-
ination strategy L+s

−sd outperforms the conventional method
ES by a factor of 2.

6.1 Experimental Testbed
We extended the NS2 network simulator [3] for our exper-

iments by adding application code for content-based rout-
ing and piggyback optimization. The subscription indexing
method and subscription aggregation approach implemented
for each router are based on existing solutions in the litera-
ture [12, 11]. It is important to emphasize that our proposed
piggyback optimization approach is orthogonal to the spe-
cific algorithms used for filtering and aggregation.

The router network topology used was a complete binary
tree with fours levels and a total of 15 routers, where each
router (except for the root router) has one immediate up-
stream router at one level above. Data is disseminated from
the root router downwards to the leaf routers. Data users
can subscribe to any router; and each router aggregates all
its subscriptions to a size that is k% of the original set; our
experiments used values of 12.5 and 25.0 (the default value)
for k. The network bandwidth values used were 1MBps,
10MBps (default), and 100MBps.

Data sets. Our experiments used three synthetic data sets
(1) NITF DTD [5], which has been used in previous studies
[8, 14, 12]; (2) Treebank [6]; (3) DBLP [2]. For each data
set, ten documents were generated using IBM’s XML Gener-
ator [1]. In addition, we also used one real-life Protein data
set [4] by extracting data from it to form small documents.
The average sizes of the documents in each of the data sets
are shown in Table 1, where NITF2 is the default data set.
Note that the document sizes used in our experiments are
typical for data dissemination settings [14, 12].

NITF1 NITF2 NITF3 Treebank DBLP Protein
50 129.4 200.8 144.1 116.6 276081

Table 1: Average document size used (# elements)

Subscriptions. The subscriptions were generated using the
XPath generator in [14], and the parameter values used are
shown in Table 2 with the default values used indicated in
bold.

In order to study the effect of the choice of forwarding
policy on performance, it is important to be able to control

Parameter Description Value
L maximum number of steps 8
ρ∗ probability of “*” 0.1
ρ// probability of “//” 0.1
ρλ probability of nested paths 0.1,0.2,0.4
θ skewness of element names 0,0.5
P #subscriptions per node 2500,5000,50000

Table 2: Parameter values for subscriptions

the position in the document at which the first subscription
matching is detected. Intuitively, the benefit of early for-
warding is more significant if the first subscription matching
occurs early in the document; while the benefit of lazy for-
warding is more significant if the first subscription matching
occurs late in the document. To enable the first subscrip-
tion matching position to be varied, we inserted an unique
element <test> in each generated document (varying the
location being inserted), and also added an additional pred-
icate //test to each generated subscription. In this way, a
subscription matching can occur only after the <test> ele-
ment has been parsed in the document. In our experimental
graphs, the first matching position is represented as a frac-
tion f ∈ [0, 1] indicating the proportion of the document
parsed before the occurrence of a first subscription match-
ing. The values used for f are 0.25, 0.5, 0.75, and 1.

Algorithms. We compared the various dissemination strate-
gies P α

β discussed in Section 3.3 by varying the annotation
types (α and β) and matching protocols (P ), including the
conventional approach ES as a special case. The main per-
formance metric compared is the response time, which is de-
fined as the average time taken to disseminate a published
document from its source to the relevant users. The response
time for disseminating a document D comprises of two key
components: (1) the transmission spent in in the network,
and (2) the processing time incurred by the routers to pro-
cess annotations against D, match subscriptions against D,
and generate annotations. Each response time reported for
a data set is the average response time for disseminating the
ten documents in the data set.

Our experiments were conducted on a 3GHz Intel Pentium
IV machine with 1GB main memory running Windows XP,
and all algorithms are implemented in C++.

6.2 Experimental Results
Effect of annotation types. Fig. 4(a) compares the per-
formance of different annotation types using the lazy for-
warding without skipping protocol as the first matching po-
sition, f , is being varied on the x-axis. Among the four
annotation types, ND improves L the most, followed by PS,
NS, and PD. L+d (not shown in Fig. 4(a)) turns out to
have similar performance as L, since the effectiveness of PD
to skip the matching operations is limited. L−d performs
better than L−s for the reason that the NITF DTD has
many optional elements such that it is likely that some ele-
ments or substrings absent from the documents which makes
ND more effective to eliminate non-matching subscriptions.
Specifically, for our default setting, 10% of the subscriptions
on each router are matching. ND can eliminate 70% of the
total subscriptions while NS can eliminate only 37% of them.
Our results also show that PS is more effective than NS but
less effective than ND.

Observe that when both NS and ND are combined, it im-
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Figure 4: Experimental results for different dissemination approaches

proves over ND only slightly. The reason is that a number
of subscriptions that can be skipped using NS can also be
skipped by ND; consequently, using NS in addition to ND
offers very little improvement. However, as the overhead
of using NS is small, adopting both negative annotations
is still better than using only a single negative annotation.
The performance of L−sd can be further optimized by also
using PS, and L+s

−sd is in fact the best strategy based on
lazy forwarding. This is because PS enables a document
to be forwarded to some routers very quickly without pars-
ing the document; and when this is not possible, the nega-
tive annotations are effective in skipping many subscription
matchings.

On the other hand, our experimental results (not shown)
indicate that positive annotations2 do not enhance the per-
formance of the eager forwarding policy at all: ES+s has
similar performance as ES, while ES+d actually performs
worse than ES. This is because only very limited PS anno-
tations can be used when a document is forwarded eagerly;
and similar to the case for lazy forwarding, PD turns out to
be not cost-effective due to the fact that PD only enables a
small number of subscriptions to be skipped and its benefit
is offset by its processing overhead.

Eager vs. lazy forwarding. Fig. 4(b) compares the per-
formance of the best eager-forwarding strategy (ES) and
the best lazy-forwarding strategy (L+s

−sd). The results show

that L+s
−sd outperforms ES indicating that the slight delay

incurred by lazy forwarding is compensated by the improve-
ment gained by the downstream routers from exploiting a
more complete set of annotations to optimize their process-
ing. We also observe that as f increases from 0.25 to 1, the

2Recall from Section 3.3 that negative annotations are not
meaningful for eager forwarding.

improvement by L+s
−sd over ES also increases from 22% to

42%. The reason is that as f grows, the lazy forwarding in
L+s
−sd incurs relatively smaller delay.

Effect of other workload. Our results with other syn-
thetic data sets (Treebank and DBLP) show similar trends
with L+s

−sd obviously outperforming ES, thus we omit the
charts here. Fig. 4(c) shows the comparison using the real-
life Protein data set. Observe that ES is actually better
than L+s

−sd when f = 0.25, but as f increases, L+s
−sd out-

performs ES with increasing margin. The reason that ES
performs better with f = 0.25 is due to the large docu-
ment size (about 10MB) : the benefit of the annotations is
offset by the longer delay incurred by L+s

−sd when f is very
small. We also tried an adaptive approach where ES is used
when the first subscription matching occurs early and L+s

−sd

is used otherwise. Our result shows that this hybrid strat-
egy (indicated as “Adaptive” in Fig. 4(c)) outperforms ES
and L+s

−sd.

Effect of bandwidth. Fig. 4(d) shows the effect of the net-
work bandwidth. With a small bandwidth of 1MBps, L+s

−sd

has a 15% improvement over ES when f = 0.25; which
increases to over 30% when f increases to 1.0. As the band-
width increases to 10MBps, the performance improvement
increases to 22% when f = 0.25 and to 42% when f = 1.0.
This is because the disadvantage of L+s

−sd (in terms of the
delay in forwarding) becomes even less significant (relative
to the processing time incurred by the routers) with a higher
network bandwidth. Not surprisingly, our results for a band-
width of 100MBps are similar to the results for a bandwidth
of 10MBps. Note that, the space overhead incurred by all
annotations used in L+s

−sd is 464bytes (the size of PS, NS,
and ND are 224, 160, and 80 bytes, respectively) for the de-
fault experimental setting where the size of the documents is
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Figure 5: Experimental results for varying the document size and query complexity

around 7000bytes. We can see that the size occupied by the
annotations is no more than 7% of the document size. Thus,
transmitting the additional annotations with the document
only incurs a very small overhead in the network delay, while
the speedup obtained for the processing on the routers is up
to a factor of 2.

Effect of data size. Intuitively, a larger document has two
conflicting effects on the performance of L+s

−sd. On the one

hand, the delay incurred by L+s
−sd is expected to increase, but

on the other hand, the improvement obtained from skipping
subscription matchings would also become more significant
with a larger document. Our experimental results shown
in Fig. 5(a) (using data sets NITF1, NITF2 and NITF3)
indicate that for larger documents (e.g. NITF3) when f =
0.25, the improvement of L+s

−sd over ES becomes smaller
(i.e. 16%), compared with the improvement for NITF2 (i.e.
22%). But their performance margin widens significantly as
the value of f increases. When f = 1, the improvement of
L+s
−sd over ES for NITF3 is 41%, which is almost the same

with NITF2 (i.e. 42%).

Effect of subscription complexity. By varying the ρλ

parameter to increase the complexity of the subscriptions,
we observe that the performance gain of L+s

−sd over ES,
shown in Fig. 5(b), becomes more significant with more com-
plex subscriptions. In particular, when ρλ increases from 0.1
to 0.4, the improvement of L+s

−sd over ES (with f = 1.0) in-
creases from 38% to 44%. The reason is because the process-
ing cost of the subscriptions increases with their complexity;
thus, the savings from skipping subscription matchings also
become more significant.

Effect of number of subscriptions. When the number of
subscriptions P is increased from 2500 to 5000, we observe
that the improvement of L+s

−sd over ES becomes larger (from
35% for P = 2500 to 42% for P = 5000). This is due to an
increase in the number of subscriptions that can be skipped
by NS and ND. Fig. 6 shows the results when P is increased
to 50000. We observe that for larger f (i.e. f = 0.75 and
f = 1.0), the improvement of L+s

−sd over ES stays the same
(e.g., 41% at f = 1.0). However, for smaller values of f ,
the improvement of L+s

−sd over ES diminishes slightly; e.g.,
with f = 0.5, the improvements decreases from 28% for P
= 5000 to 11% for P = 50000. When f = 0.25, ES is
more efficient than L+s

−sd. The reason is because for L+s
−sd,

the root router needs to match against all the subscriptions;
and when f = 0.25, the delay at the root router is increased
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Figure 6: Effect of number of subscriptions

more significantly for L+s
−sd (relative to ES) such that the

the overall efficiency of L+s
−sd becomes diminished.

Other experiments. We also vary other parameters (k =
12.5, θ = 0) separately with the following results :(1) With
a smaller value of k, PS becomes slightly less effective since
the more brute aggregation makes the simple aggregation
requirements harder to satisfy; and the performance of NS
decreases a little as well due to the less accuracy of the ag-
gregation; (2) Our results show that varying the distribution
to generate the subscriptions has little effect on the perfor-
mance trend.

Throughput comparison. Although L+s
−sd performs bet-

ter in terms of the response time, the results show that
the throughput of L+s

−sd is slightly worse than ES : when

f = 0.25, the throughput of L+s
−sd is 72% of that of ES; when

f = 1.0, it increases to 88% of ES’s throughput. The total
throughput is determined by the slowest router in the sys-
tem. In L+s

−sd, the root router is the bottleneck since there
are no annotations that can be used and all subscriptions
have to be evaluated, thus the throughput of L+s

−sd loses to
ES. However, at all downstream routers, the disseminated
documents are processed much faster using L+s

−sd than using
ES because of the effective annotation inserted. Therefore,
if we use a more powerful router at the root node, L+s

−sd can
also achieve higher throughput than ES.

6.2.1 Discussions
Based on our experimental results, we have the following

observations on the effectiveness of the various annotation
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types. First, the effectiveness of PD annotations is found
to be limited as only very few subscriptions can be pruned
using PD annotations and the marginal saving from using
PD annotations is offset by its overhead. Second, compar-
ing ND and NS annotations, the former is generally more
effective than the latter. This is due to a combination of
two reasons. As the disseminated documents are small and
the data schema has many optional elements, many of the
elements in the schema (and hence also appearing in many
queries) do not occur in the small documents. Thus, ND
annotations can help prune many queries in a downstream
router. Moreover, the process of aggregating subscriptions
often results in a document D matching an aggregated sub-
scription s′ in an upstream router even when all of the ag-
gregating subscriptions of s′ in a downstream router do not
match D. Finally, the relative effectiveness between ND and
PS annotations is less clear due to the different nature of
their benefits. Recall that the benefit of ND annotations is
in reducing subscription matching in a downstream router,
while the benefit of PS annotations lies in enabling the for-
warding of document without processing it. Neither ND nor
PS annotations are found to be significantly more effective
than the other in our experiments.

7. RELATED WORK
Work on optimizing the performance of content-based dis-

semination of XML data has mainly focused on minimizing
the number of subscription matchings via two techniques:
indexing methods to enable selective subscription matchings
[8, 14, 17, 19, 26, 16, 22, 9, 21], and subscription aggrega-
tion techniques to summarize a set of subscriptions into a
smaller set of generalized subscriptions [11, 26]. A recent
interesting direction explored by Fisher and Kossmann [15]
examines batched processing of multiple documents which
is distinct from our work.

The recent work by Gupta, Halevy, and Suciu [18, 20] also
deals with using document header annotations in content-
based data dissemination; however, the problem definition
and setting are completely different. In their work, each
router has a workload of simple conjunctive queries that
need to be processed on each incoming document. Their
motivation is to try to avoid parsing the document at each
router by using a set of views whose results are pre-computed
and stored as the document header annotation. Each view’s
result is represented by a byte offset in the XML document;
and the header annotation for a document is statically de-
termined by a centralized server that has knowledge of all
the routers’ workloads. Our paper is fundamentally different
from theirs in the following four ways: (1) our work is moti-
vated by using annotations to leverage the processing done
by upstream routers to optimize subscription matchings at
downstream routers; (2) our annotations are not static byte
offsets but refer to data patterns and subscriptions which
can be changed as the document is being routed; (3) our
annotations are not precomputed by a centralized entity,
but are instead computed dynamically by each forwarding
router; and (4) our annotations exploit the containment
property between aggregated and aggregating subscriptions
for optimization.

8. CONCLUSIONS
In this paper, we have proposed a novel approach to op-

timize the performance of content-based dissemination of
XML data by piggybacking useful annotations to the docu-
ment being forwarded so that a downstream router can lever-
age the processing done by its upstream router to reduce its
own processing overhead. We have examined a large design
space of dissemination strategies that combine four types of
annotations and two forwarding policies. Our experimen-
tal study demonstrates both the feasibility and effectiveness
of the new approach. In particular, the strategy of com-
bining lazy forwarding with three types of annotations turn
out to be the best option that outperforms the conventional
method by a factor of 2. As part of future work, we in-
tend to explore the performance tradeoffs of adopting other
annotation types.
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