
XML Document
Parsing: Operational
and Performance
Characteristics

Tak Cheung Lam
and Jianxun Jason Ding
Cisco Systems

Jyh-Charn Liu
Texas A&M University

Parsing is an expensive operation that can degrade XML

processing performance. A survey of four representative XML

parsing models—DOM, SAX, StAX, and VTD—reveals their

suitability for different types of applications.

B
roadly used in database and networking applications, the
Extensible Markup Language is the de facto standard for the
interoperable document format. As XML becomes widespread,
it is critical for application developers to understand the opera-
tional and performance characteristics of XML processing.

As Figure 1 shows, XML processing occurs in four stages: parsing, access,
modification, and serialization. Although parsing is the most expensive
operation,1 there are no detailed studies that compare

the processing steps and associated overhead costs of different parsing
models,
tradeoffs in accessing and modifying parsed data, and
XML-based applications’ access and modification requirements.

Figure 1 also illustrates the three-step parsing process. The first two steps,
character conversion and lexical analysis, are usually invariant among dif-
ferent parsing models, while the third step, syntactic analysis, creates data
representations based on the parsing model used.

To help developers make sensible choices for their target applications, we
compared the data representations of four representative parsing models:
document object model (DOM; www.w3.org/DOM), simple API for XML
(SAX; www.saxproject.org), streaming API for XML (StAX; http://jcp.org/
en/jsr/detail?id=173), and virtual token descriptor (VTD; http://vtd-xml.
sourceforge.net). These data representations result in different operational
and performance characteristics.

XML-based database and networking applications have unique require-
ments with respect to access and modification of parsed data. Database

•

•
•

C O M P U T I N G P R A C T I C E S

	 30	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

	 September 2008	 31

applications must be able to access and modify the doc-
ument structure back and forth; the parsed document
resides in the database server to receive multiple incom-
ing queries and update instructions. Networking appli-
cations rely on one-pass access and modification during
parsing; they pass the unparsed document through the
node to match the parsed queries and update instruc-
tions reside in the node.

XML PARSING STEPS
An XML parser first groups a bit sequence into char-

acters, then groups the characters into tokens, and finally
verifies the tokens and organizes them into certain data
representations for analysis at the access stage.

Character conversion
The first parsing step involves converting a bit sequence

from an XML document to the character sets the host
programming language understands. For example,
documents written in Western, Latin-style alphabets are
usually created in UTF-8, while Java usually reads char-
acters in UTF-16. In most cases, a UTF-8 character can
be converted to UTF-16 by simply padding 8-bit lead-
ing zeros. For example, the parser converts “<” “a” “>”
from “3C 61 3E” to “003C 0061 003E” in hexadecimal
representation. It is possible to avoid such a character
conversion by composing the documents in UTF-16, but

UTF-16 takes twice as much space as UTF-8, which has
tradeoffs in storage and character scanning speed.

Lexical analysis
The second parsing step involves partitioning the

character stream into subsequences called tokens.
Major tokens include a start element, text, and an end
element, as Table 1 shows. A token can itself consist
of multiple tokens. Each token is defined by a regular
expression in the World Wide Web Consortium (W3C)
XML specifications, as shown in Table 2. For exam-
ple, a start element consists of a “<”, followed by an
element name, zero or more attributes preceded by a
space-like character, and a “>”. Each attribute consists
of an attribute name, followed by an “=” enclosed by a

Table 1. XML token examples.

Token	 Example

Start element <Record>John</Record>
End element <Record>John</Record>

Text <Record>John</Record>
Start element name <Record private = “yes”>
Attribute name <Record private = “yes”>
Attribute value <Record private = “yes”>

b
2

b
1

b
1

b
1

b
1

b
1

b
1

b
1

c

a a a a a a a a

c c cc c

b
2

b
2

b1

a

$

b1

a

$

a

$

b2

a

$

a

$ $

b1

a

$

a

$$

Intial
stack

Read
<a>

Read
<b1>

Read
<c>

Read
</c>

Read
</b1>

Read
<b2>

Read
</b2>

Read

PDAFSM

Final state

Start state SpaceElement
name

Start
element
found

Space

Space

Space

Space

Space or char

Char

Char

Char

Char

Element
name

End
element
found

Text
foundText

EOF

<

<

>

>/ ∅ ∅

∅ ∅

Character sequence
(for example, 003C 0061 003E =

‘<’ ‘a’ ‘>’)

Token sequence
(for example,

‘<a>’ ‘x’ ‘’)

Data representation (parsing model dependent)
(for example, tree, events, integer arrays)

Bit sequence
(for example,

3C 61 3E)

Character
conversion

(for example, pad zeros)

Invariant among
different parsing models

Variant among
different parsing models

Semantic
analysis

Input XML
document Parsing Access Modification Serialization

(Performance bottleneck) (Performance affected by parsing models)

Output XML
document

Syntactic
analysis
(PDA)

Lexical
analysis
(FSM)

Managed by application
(access, modification, and so on)

A
P
I

Ready
to

scan
an

element

∅

∅

Figure 1. XML processing stages and parsing steps. The three-step parsing process is the most expensive operation in XML
processing.

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

	 32	 Computer

zero or one space-like character on each side, and then
an attribute value.

A finite-state machine (FSM) processes the character
stream to match the regular expressions. The simplified
FSM in Figure 1 processes the start element, text, and
the end element only, without processing attributes. To
achieve full tokenization, an FSM must evaluate many
conditions that occur at every character. Depending on
the nature of these conditions and the frequency with
which they occur, this can result in a less predictable flow
of instructions and thus potentially low performance
on a general-purpose processor. Proposed tokenization
improvements include assigning priority to transition
rules,2 changing instruction sets for “<” and “>”,3 and
duplicating the FSM for parallel processing.4

Syntactic analysis
The third parsing step involves verifying the tokens’

well-formedness, mainly by ensuring that they have
properly nested tags. The pushdown automaton (PDA)
in Figure 1 verifies the nested structure using the follow-
ing transition rules:

 The PDA initially pushes a “$” symbol to the stack.
 If it finds a start element, the PDA pushes it to the
stack.

 If it finds an end element, the PDA checks whether
it is equal to the top of the stack.

If yes, the PDA pops the element from the stack.
 If the top element is “$”, then the document is
 “well-formed.” Done!
 Otherwise, the PDA continues to read the next
 element.

If no, the document is not “well-formed.” Done!

In the complete well-formedness check, the PDA must
verify more constraints—for example, attribute names

1.
2.

3.

•

•

of the same element cannot repeat. If schema validation
is required, a more sophisticated PDA checks extra con-
straints such as specific element names, the number of
child elements, and the data type of attribute values.

In accordance with the parsing model, the PDA orga-
nizes tokens into data representations for subsequent
processing. For example, it can produce a tree object
using the following variation of transition rule 2:

If it finds a start element, the PDA checks the top element
before pushing it to the stack.

If the top element is “$”, then this start element is
the root.
Otherwise, this start element becomes the top ele-
ment’s child.

After syntactic analysis, the data representations are
available for access or modification by the application
via various APIs provided by different parsing models,
including DOM, SAX, StAX, and VTD.

PARSING MODEL DATA REPRESENTATIONS
XML parsers use different models to create data rep-

resentations. DOM creates a tree object, VTD creates
integer arrays, and SAX and StAX create a sequence of
events. Both DOM and VTD maintain long-lived struc-
tural data for sophisticated operations in the access and
modification stages, while SAX and StAX do not. DOM
as well as SAX and StAX create objects for their data
representations, while VTD eliminates the object-cre-
ation overhead via integer arrays.

DOM and VTD maintain different types of long-lived
structural data. DOM produces many node objects to
build the tree object. Each node object stores the element
name, attributes, namespaces, and pointers to indicate
the parent-child-sibling relationship. For example, in Fig-
ure 2 the node object stores the element name of Phone
as well as the pointers to its parent (Home), child (1234),
and next sibling (Address). In contrast, VTD creates no
object but stores the original document and produces
arrays of 64-bit integers called VTD records (VRs) and
location caches (LCs). VRs store token positions in the
original document, while LCs store the parent-child-sib-
ling relationship among tokens.

While DOM produces many node objects that include
pointers to indicate the parent-child-sibling relationship,
SAX and StAX associate different objects with differ-
ent events and do not maintain the structures among
objects. For example, the start element event is associ-
ated with three String objects and an Attributes object
for the namespace uniform resource identifier (URI),
local name, qualified name, and attribute list. The end
element event is similar to the start element event with-
out an attribute list. The character event is associated
with an array of characters and two integers to denote

•

•

Table 2. Regular expressions of XML tokens.

Token	 Regular	expression

Start element ‘<’ Name (S Attribute)* S? ‘<’
End element ‘</’ Name (S Attribute)* S? ‘<’
Attribute Name Eq AttValue
S (0×20 0×90×D 0×A)+
 Space-like characters
Eq S? ‘=’ S?
 Equal-like characters
Name Some other regular expressions
AttValue Some other regular expressions

* = 0 or more; ? = 0 or 1; + = 1 or more.

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

	 September 2008	 33

the start position and text length. In Figure 2, Phone’s
start element has no attribute and namespace, so SAX
and StAX associate it with two String objects to store its
local and qualified names.

OPERATIONAL AND
PERFORMANCE CHARACTERISTICS

Different data representations result in different opera-
tional and performance characteristics, as summarized
in Tables 3 and 4, respectively. They also affect the choice
of parsing models for various applications, as indicated in
Table 5. We focus on how different data representations
impact three XML processing capabilities: streaming,
access and modification, and hardware acceleration.

Streaming capability
Streaming requires low latency and memory usage,

and usually the parser only needs to extract a small
portion of the document sequentially without knowing
the entire document structure. To understand parsing
models’ impact on streaming capability, it is important
to understand how the parser and application interact
during data access.

DOM and VTD. As Figure 3a shows, DOM and VTD
can access data only after parsing is complete—that
is, when the loop inside the parser program can draw
no more tokens from lexical analysis to construct the
tree or VRs. A large document will significantly delay
data access. Moreover, the two models’ long-lived data

Address

64-bit integers
(token type, offset, length, and so on)

Address

11th St. M Ave. …

PhonePhone

1234 5678

DOM: Tree object
Life: Long Object: Yes

VTD: Integer arrays
Life: Long Object: No

SAX/StAX: Events
Life: Short Object: Yes

Record

Name Work

John

Home

start document
start element: Record
…
start element: Name
character: John
end element: Name
start element: Home
start element: Phone
character: 1234
end element: Phone
…
end element: record
end document

Address

Home

1234

null

parent

child

nextSiblingprevSibling

Node object startEvent: Phone

url: null attrList: null

l_name: Phone q_name: Phone

Original document VTD records Location caches

<?xml version = “1.0”?>
<Record>
 <Name>John</Name>
 <Home>
 <Phone>1234</Phone>
 <Address>11th St</Address>
 </Home>
 <Work>
 <Phone>5678</Phone>
 <Address>M Ave</Address>
 </Work>
</Record>

version
1.0
Record
Name
John
Name
Home
Phone
1234
Phone
…
Record

9
10
0
0
5
1
0
0
5
1
…
1

–1
–1
0
1
1
1
1
2
2
2
…
0

6:7
15:3
23:0:6
33:0:4
38:4
44:0:4
52:0:4
61:0:5
67:4
73:0:5
…
187:0:6

token name token type nested depth

offset:length/
offset:prefex

length:qname
length 33:0:4

53:0:4
121:0:4

token index
–1
61:0:5
130:0:5

1st child index

LC1 (depth = 1)

61:0:5
84:0:7
130:0:5
152:0:7

token index
–1
–1
–1
–1

1st child index

LC2 (depth = 2)

Figure 2. Data representation example. The start element of Phone is represented by “0, 2, 61:0:5” in VTD records. This entry indicates
that there is a token of type 0 (start element) at nested depth 2, and this token’s first character is located at the 61st position of the
original document. This token has a prefix name of length 0, indicating that the token does not use a namespace, and a qualified
name of length 5. The token indices (offset: prefix length: qname length) of all start elements are stored in location caches at certain
nested depths. For example, LC level 2 (LC2) stores the token indices by its first 32-bit field for all start elements at nested depth 2.
The second 32-bit field stores the index of its first child. A token with no child has “–1” in this field. For example, the start element of
Phone is recorded in LC2 as “61:0:5, –1”.

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

	 34	 Computer

Table 3. XML processing operational characteristics.

XML	processing		

stage	 DOM	 SAX	(push)	 StAX	(pull)	 VTD

Parsing 1. Extract token as objects. 1. Extract token as objects. 1. Extract token as objects. 1. Do not extract token as
 objects (use integers instead).
 2. Build tree by objects 2. Create events by objects 2. Create events by objects 2. Build location cache and
 (for example, Nodes). (for example, Strings). (for example, Strings). 64-bit VTD records.
 3. Not ready for access. 3. Ready for access—go to 3. Ready for access—go to 3. Not ready for access.
 step 8 (application handles step 8 (application handles
 event). or skips event).
 4. Do not destroy any 4. Destroy objects after 4. Destroy objects after 4. Do not destroy any objects.
 objects. handling the event. handling or skipping the
 event.
 5. Repeat from step 1 until 5. Repeat from step 1 until 5. Repeat from step 1 until 5. Repeat from step 1 until
 all tokens are processed. all tokens are processed. all tokens are processed. all tokens are processed.
 6. (Optional) Destroy the 6. (Optional) Destroy the 6. (Optional) Destroy the 6. Keep the original document
 original document after original document after original document after in memory.
 building the entire tree. handling all events. handling or skipping all
 events.
 7. Ready for access. 7. Access is complete—go 7. Access is complete—go 7. Ready for access.
 to step 9. to step 9.
Access 8. Back-and-forth access: 8. Sequential access (no 8. Sequential access (skip 8. Back-and-forth access:
 Parsing provides sufficient skip): The application creates forward): The application Parsing provides sufficient data
 data structures (tree). its own data structure if more creates its own data structures (VTD records and
 advanced access or structure if more advanced location caches).
 modification is required (go access or modification is
 to step 4). required (go to step 4).
Modification 9. Update the tree. 9. Update the data structure 9. Update the data structure 9. Update by making new copy
 from step 8. from step 8. of the document.
 10. Write the tree in XML 10. Write the data structure 10. Write the data structure 10. The document is already in
 format. from step 9 in XML format. from step 9 in XML format. XML format.
 11. Destroy the tree. 11. Destroy the data 11. Destroy the data 11. Destroy VTD records and
 structure. structure. location cache.

Table 4. XML processing performance characteristics.

Category	 DOM	 SAX	(push)	 StAX	(pull)	 VTD

Output Tree object Events (all tokens) Events (interested tokens) Integer array
Parsing (CPU) High Medium Medium Low
Parsing (memory) Intensive Low Low Medium
Access (navigation) Fast (back and forth) Slow (sequential: no skipping) Medium (sequential: Fast (back and forth)
 skip forward)
Modification (update) Medium (not incremental) Depends (template/forward) Depends (template/forward) Fast (incremental)
Estimated5 throughput, small ~10 Mbytes per second ~20 Mbytes per second ~20 Mbytes per second ~50 Mbytes per second
file (1 Kbyte-15 Kbytes)*
Estimated5 throughput, large ~5 Mbytes per second ~20 Mbytes per second ~20 Mbytes per second ~40 Mbytes per second
file (1 Mbyte-15 Mbytes)*
Estimated memory,* large ~7 Mbytes Does not depend on Does not depend on ~1.5 Mbytes
file (1 Mbyte-15 Mbytes) document size document size

* The test platform is a Sony VAIO laptop with a Pentium M 1.7-GHz processor (2-Mbyte integrated L2 cache) and 512-Mbyte DDR2 RAM. The front bus is
 clocked at 400 MHz. The OS is Windows XP Professional Edition with Service Pack 2, and the Java virtual machine is version 1.5.0_06.

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

	 September 2008	 35

representations make memory usage grow
with document size, which is undesirable
for streaming.

SAX and StAX. In contrast, SAX and
StAX interlace parsing and access, so the
application can access partial data before
parsing is complete. Because the objects
associated with events can be destroyed
regularly, memory usage does not grow
with document size. Therefore, although
SAX and StAX are two times slower than
VTD due to frequent object allocations,5
they are still better candidates for stream-
ing applications.

SAX and StAX are both designed for
streaming applications, but their parser-
application interactions are different. As
Figure 3b shows, SAX adopts the push
model, which uses callback functions to
report events from the parser to the appli-
cation. The parser has a loop to continu-
ously check tokens produced from lexical
analysis. When it finds a token, the parser
invokes a callback function based on
the token type such as startElement(…),
endElement(…), characters(…).

In contrast, StAX adopts the pull model,
as shown in Figure 3c. An application in the
pull model can skip uninterested events by
calling nextEvent(), whereas an application
in the push model must handle all events
fed from the parser. The pull model does
not need to maintain states between call-
back functions to decide correct actions,
making the programming flow more natural and main-
tainable.

A common misconception is that pull parsers are always
faster than push parsers because they save effort by skip-
ping uninteresting events. However, numerous studies
reveal that this is not always true.5-8 Although the appli-
cation can skip events by calling nextEvent(), the parser
still creates the events sequentially without skipping them.
Performance therefore depends on the application needs.
If the application has to navigate through the entire docu-

ment, the pull model has little advantage over the push
model, but if it can stop parsing after accessing certain
uninteresting data, the pull model is faster.

Access and modification capability
To compare the four parsing models’ ability to access

and modify data back and forth, we considered two
scenarios based on the input XML document shown
in Figure 2, in which the root Record has a child Name
with several siblings, each of which has multiple Phone

Table 5. XML processing capability and applications.

Capability	 DOM	 VTD	 SAX/StAX

Parsing output Tree object (long-lived) Integer arrays (long-lived) Events (frequently destroyed)
Streaming No No Yes
Access Back and forth repeatedly Back and forth repeatedly One pass sequentially
Modification Directly modify the tree (frequent Copy and paste to new array Get and put into template
 and complex is OK) (only OK if simple and rare) (only OK if simple and rare)
Desirable application Database In between Networking

…
…

// Communicate with tokenizer
// Build the data structures

// Data structure completely built
// Ready for application to access

Parser Application (access)

Push parser (Interlaced) Application (access)
(a)

(b)

(c)

Pull parser (Interlaced) Application (access)

invoke callback

callback returns

invoke
acc

ess

Loop

Loop

Loop

// Callback functions

// Navigate the data structures

invoke callback

callback returns

nextEvent returns

invoke nextEvent

nextEvent returns

invoke nextEvent

Event nextEvent() {
 // Communicate with tokenizer
 // Create event by grouping
 // appropriate tokens into objects
 // Return the event
}

// Invoke nextEvent()
// Check event type
// Invoke callback function

Event nextEvent() {
 // Communicate with tokenizer
 // Create event by grouping
 // appropriate tokens into objects
 // Return the event
}

// Invoke nextEvent()
// Check event type
// Handle the event

startElement(…) {
 // Handle the event
 return;
}
endElement(…) {
 //Handle the event
 return;
}
characters(…) {
 // Handle the event
 return;
)
…

Figure 3. Parser-application interactions. (a) DOM and VTD: Access after
parsing completed; (b) SAX: Interlaced parsing and access (parser driven); (c)
StAX: Interlaced parsing and access (application driven).

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

	 36	 Computer

children. The siblings can appear before Name (not
shown in the figure). The access scenario calls for print-
ing the texts of all Phone elements if the text of Name is
John, while the modification scenario calls for switch-
ing the first and last Phone elements in the document.

SAX and StAX. SAX and StAX do not maintain long-
lived structural data and are limited to sequential access.
Thus, in the access scenario, the application must either
buffer the texts of all Phone elements before the FSM
matches John or parse the document again after the
FSM matches John. Memory consumption depends on
Name’s location in the document. In the modification
scenario, the application must buffer the entire docu-
ment before it can switch the last Phone element with the
first one. SAX and StAX thus do not have an advantage
in terms of memory consumption as they do in stream-
ing applications. For this reason, SAX and StAX are
typically used for forward-only applications or simple
modifications via template such as Extensible Stylesheet
Language Transformations (XSLT).

DOM and VTD. In contrast to SAX and StAX, DOM
and VTD maintain parent-child-sibling information
in their long-lived structural data. Preparing this data
incurs more overhead, but the simple-to-navigate tree
or LCs ease access.

VTD consumes far less memory than DOM—1.3
to 1.5 times the original document size, which is 3 to
5 times smaller than the DOM tree—and it parses 5
to 10 times faster than DOM.5 This performance dif-
ference is primarily attributable to DOM object cre-
ations. Many object-oriented programming languages
incur small memory overhead per object allocation,
and VTD is immune to this overhead because it uses
integer arrays instead of objects. Moreover, VRs and

LCs are constant in length and thus the VTD
implementation can store them in large mem-
ory blocks. By allocating a large integer array
for 4,096 VRs, VTD has a per-array alloca-
tion overhead of only 16 bytes, significantly
reducing the per-record overhead.

Although VTD outperforms DOM in
throughput and memory usage, it cannot replace
DOM because of their different modification
capabilities. DOM is more suitable for massive
and frequent updates, much as a linked-list is
more suitable than an array for update opera-
tions. It is possible to add or delete a node to or
from the DOM tree by simply manipulating the
pointers between tree nodes. The modified tree
is then ready for further updates.

On the other hand, when adding or deleting
a record to or from the integer arrays in VRs,
VTD might need to rebuild many VR and LC
entries to process the next update operation.
VTD is thus more suitable for incremental
updating. As Figure 4 shows, it employs a “copy

and paste” approach in the modification scenario that
rearranges the original document into a new buffer. Such
a modification requires three processing steps in DOM:
building the in-memory tree, navigating and updating
the tree, and translating the updated tree back into XML
format. These steps involve many string concatenations,
buffer allocations, and character conversions, making
DOM less efficient for simple and rare modifications.

Hardware acceleration capability
Hardware acceleration can boost XML parsing per-

formance that general-purpose processors otherwise
cannot achieve. As Table 4 shows, XML parsing soft-
ware throughput on a general-purpose processor ranges
from 5 to 50 Mbytes per second, but enterprise software
servers call for gigabit-per-second throughput rates.9,10
To explore the different parsing models’ hardware accel-
eration capabilities, it is necessary to understand their
data structures.

VTD’s symmetric data structure makes it or other
similar flat-array XML representations ideal candidates
for hardware acceleration. The flat array allows efficient
memory management before and after acceleration and
eases the crossing between the hardware acceleration
and the application logic spaces.

In contrast, the parsing and application logic in SAX
and StAX are interwoven via callbacks or events inten-
sively. The high frequency and associated overhead of
entering and leaving the hardware acceleration space to
and from the application logic space make these models
unsuitable for hardware acceleration.

DOM’s tree structure also poses serious challenges
to hardware acceleration. Implementing circuitries to
operate and manage dynamic tree representations is far

<?xml version = “1.0”?>
<Record>
 <Name>John</Name>
 <Home>
 <Phone>5678</Phone>
 <Address11th St</Address>
 </Home>
 <Work>
 <Phone>1234</Phone>
 <Address>M Ave</Address>
 </Work>
</Record>

<?xml version = “1.0”?>
<Record>
 <Name>John</Name>
 <Home>

 <Address11th St</Address>
 </Home>
 <Work>

 <Phone>1234</Phone>

 <Phone>5678</Phone>

 <Address>M Ave</Address>
 </Work>
</Record>

Output stream
(file or network)

52:0:4

61:0:5
73:0:5

130:0:5
142:0:5

84:0:7

121:0:4

152:0:7

Original document
(in-memory)

Figure 4. VTD’s “copy and paste” approach. VTD rearranges the original
document into a new buffer, a modification that requires three processing
steps in DOM. The approach makes VTD more suitable than DOM for
incremental updates.

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

September 2008 37

more complex than typical field-programmable gate
array (FPGA) and application-specific integrated circuit
(ASIC) designs, making DOM less favorable for hard-
ware acceleration.

No commercial VTD hardware is yet available on the
market, so at this point it is impossible to evaluate the
performance of hardware-accelerated VTD versus soft-
ware-based DOM on frequently updated operations.

O ur analysis of parsing models’ data represen-
tations and their impact on XML processing
yielded the following conclusions. Both DOM

and VTD are good for back-and-forth data access.
VTD parses faster than DOM and consumes less
memory. VTD is better for simple and rare modifica-
tions, while DOM is better for complex and frequent
ones. SAX and StAX are appropriate for applications
with extremely restrictive memory but not for back-
and-forth access or modification.

In a nutshell, DOM is most suitable for database
applications, while SAX and StAX are more appropri-
ate for streaming applications. VTD is a good candi-
date for hardware acceleration based on its symmet-
ric array structure, but its effectiveness in real-world
applications using a commercial hardware accelerator
remains an open question. ■

References
 1. M. Nicola and J. John, “XML Parsing: A Threat to Data-

base Performance,” Proc. 12th Int’l Conf. Information and
Knowledge Management (CIKM 03), ACM Press, 2003, pp.
175-178.

 2. J. van Lunteren et al., “XML Accelerator Engine,” Proc. 1st
Int’l Workshop High Performance XML Processing, 2004;
www.zurich.ibm.com/~jvl/xml2004.pdf.

 3. L. Zhao and L. Bhuyan, “Performance Evaluation and Accel-
eration for XML Data Parsing,” Proc. 9th Workshop Com-
puter Architecture Evaluation Using Commercial Workloads
(CAECW 06), 2006; www.cs.ucr.edu/~zhao/paper/caecw06_
xml.pdf.

 4. Y. Pan et al., “Parallel XML Parsing Using Meta-DFAs,”
Proc. 3rd IEEE Int’l Conf. e-Science and Grid Computing
(e-Science 07), IEEE CS Press, 2007, pp. 237-244.

 5. J. Zhang, “Simplify XML Processing with VTD-XML,”
JavaWorld, 27 Mar. 2006; www.javaworld.com/javaworld/
jw-03-2006/jw-0327-simplify.html.

 6. Y. Oren, “SAX Parser Benchmarks,” 2002; http://piccolo.
sourceforge.net/bench.html.

 7. B. Nag, “A Comparison of XML Processing in .NET and
J2EE,” Proc. XML Conf. and Exposition 2003 (XML 03),
2003; www.idealliance.org/papers/dx_xml03/papers/06-01-
03/06-01-03.pdf.

 8. A. Slominski, “On Performance of Java XML Parsers”; www.
cs.indiana.edu/~aslom/exxp.

 9. A. Waheed and J. Ding, “Benchmarking XML Based Appli-
cation Oriented Network Infrastructure and Services,” Proc.
2007 Int’l Symp. Applications and the Internet (SAINT 07),
no. 15, IEEE CS Press, 2007.

 10. J. Ding and A. Waheed, “Dual Processor Performance Char-
acterization for XML Application-Oriented Networking,”
Proc. 2007 Int’l Conf. Parallel Processing (ICPP 07), no. 52,
IEEE CS Press, 2007.

Tak Cheung (Brian) Lam is a software engineer in the Wire-
less and Security Technology Group at Cisco Systems. His
research interests include applied cryptography, network
security, and performance optimization. Lam received a
PhD in computer science from Texas A&M University. He
is a member of the IEEE Computer Society. Contact him
at brlam@cisco.com.

Jianxun Jason Ding is a senior technical leader in Cisco’s
Open Platform Software Technology Center. His research
interests include performance testing, evaluation, and
optimization of both hardware and software systems.
Ding received a PhD in computer science from Texas
A&M University. He is a member of the IEEE Computer
Society. Contact him at jiding@cisco.com.

Jyh-Charn Liu is a professor in the Department of Com-
puter Science at the Dwight Look College of Engineer-
ing, Texas A&M University. His research interests include
real-time distributed computing systems, network perfor-
mance and security, and medical informatics. Liu received
a PhD in electrical and computer engineering from the
University of Michigan. He is a member of the IEEE
Computer and Communications societies. Contact him
at liu@cs.tamu.edu.

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Articles

Author guidelines: www.computer.org/
software/author.htm
Further details: software@computer.org

www.computer.org/software

Call
for

Authorized licensed use limited to: West Virginia University. Downloaded on June 26, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

