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Parsing is an expensive operation that can degrade XML 

processing performance. A survey of four representative XML 

parsing models—DOM, SAX, StAX, and VTD—reveals their 

suitability for different types of applications.

B
roadly used in database and networking applications, the 
Extensible Markup Language is the de facto standard for the 
interoperable document format. As XML becomes widespread, 
it is critical for application developers to understand the opera-
tional and performance characteristics of XML processing.

As Figure 1 shows, XML processing occurs in four stages: parsing, access, 
modification, and serialization. Although parsing is the most expensive 
operation,1 there are no detailed studies that compare 

the processing steps and associated overhead costs of different parsing 
models, 
tradeoffs in accessing and modifying parsed data, and 
XML-based applications’ access and modification requirements. 

Figure 1 also illustrates the three-step parsing process. The first two steps, 
character conversion and lexical analysis, are usually invariant among dif-
ferent parsing models, while the third step, syntactic analysis, creates data 
representations based on the parsing model used. 

To help developers make sensible choices for their target applications, we 
compared the data representations of four representative parsing models: 
document object model (DOM; www.w3.org/DOM), simple API for XML 
(SAX; www.saxproject.org), streaming API for XML (StAX; http://jcp.org/
en/jsr/detail?id=173), and virtual token descriptor (VTD; http://vtd-xml.
sourceforge.net). These data representations result in different operational 
and performance characteristics.

XML-based database and networking applications have unique require-
ments with respect to access and modification of parsed data. Database 
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applications must be able to access and modify the doc-
ument structure back and forth; the parsed document 
resides in the database server to receive multiple incom-
ing queries and update instructions. Networking appli-
cations rely on one-pass access and modification during 
parsing; they pass the unparsed document through the 
node to match the parsed queries and update instruc-
tions reside in the node. 

XML PARSING STEPS
An XML parser first groups a bit sequence into char-

acters, then groups the characters into tokens, and finally 
verifies the tokens and organizes them into certain data 
representations for analysis at the access stage. 

Character conversion
The first parsing step involves converting a bit sequence 

from an XML document to the character sets the host 
programming language understands. For example, 
documents written in Western, Latin-style alphabets are 
usually created in UTF-8, while Java usually reads char-
acters in UTF-16. In most cases, a UTF-8 character can 
be converted to UTF-16 by simply padding 8-bit lead-
ing zeros. For example, the parser converts “<” “a” “>” 
from “3C 61 3E” to “003C 0061 003E” in hexadecimal 
representation. It is possible to avoid such a character 
conversion by composing the documents in UTF-16, but 

UTF-16 takes twice as much space as UTF-8, which has 
tradeoffs in storage and character scanning speed.

Lexical analysis
The second parsing step involves partitioning the 

character stream into subsequences called tokens. 
Major tokens include a start element, text, and an end 
element, as Table 1 shows. A token can itself consist 
of multiple tokens. Each token is defined by a regular 
expression in the World Wide Web Consortium (W3C) 
XML specifications, as shown in Table 2. For exam-
ple, a start element consists of a “<”, followed by an 
element name, zero or more attributes preceded by a 
space-like character, and a “>”. Each attribute consists 
of an attribute name, followed by an “=” enclosed by a 

Table 1. XML token examples.

Token	 Example

Start element <Record>John</Record>
End element <Record>John</Record>

Text <Record>John</Record>
Start element name <Record private = “yes”>
Attribute name <Record private = “yes”>
Attribute value <Record private = “yes”>
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Figure 1. XML processing stages and parsing steps. The three-step parsing process is the most expensive operation in XML 
processing.
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zero or one space-like character on each side, and then 
an attribute value. 

A finite-state machine (FSM) processes the character 
stream to match the regular expressions. The simplified 
FSM in Figure 1 processes the start element, text, and 
the end element only, without processing attributes. To 
achieve full tokenization, an FSM must evaluate many 
conditions that occur at every character. Depending on 
the nature of these conditions and the frequency with 
which they occur, this can result in a less predictable flow 
of instructions and thus potentially low performance 
on a general-purpose processor. Proposed tokenization 
improvements include assigning priority to transition 
rules,2 changing instruction sets for “<” and “>”,3 and 
duplicating the FSM for parallel processing.4

Syntactic analysis 
The third parsing step involves verifying the tokens’ 

well-formedness, mainly by ensuring that they have 
properly nested tags. The pushdown automaton (PDA) 
in Figure 1 verifies the nested structure using the follow-
ing transition rules:

 The PDA initially pushes a “$” symbol to the stack.
 If it finds a start element, the PDA pushes it to the 
stack.

 If it finds an end element, the PDA checks whether 
it is equal to the top of the stack.

If yes, the PDA pops the element from the stack.
  If the top element is “$”, then the document is  
  “well-formed.” Done!
  Otherwise, the PDA continues to read the next  
  element.

If no, the document is not “well-formed.” Done!

In the complete well-formedness check, the PDA must 
verify more constraints—for example, attribute names 

1.
2.

3.

•

•

of the same element cannot repeat. If schema validation 
is required, a more sophisticated PDA checks extra con-
straints such as specific element names, the number of 
child elements, and the data type of attribute values. 

In accordance with the parsing model, the PDA orga-
nizes tokens into data representations for subsequent 
processing. For example, it can produce a tree object 
using the following variation of transition rule 2:

If it finds a start element, the PDA checks the top element 
before pushing it to the stack.

If the top element is “$”, then this start element is 
the root.
Otherwise, this start element becomes the top ele-
ment’s child.

After syntactic analysis, the data representations are 
available for access or modification by the application 
via various APIs provided by different parsing models, 
including DOM, SAX, StAX, and VTD.

PARSING MODEL DATA REPRESENTATIONS
XML parsers use different models to create data rep-

resentations. DOM creates a tree object, VTD creates 
integer arrays, and SAX and StAX create a sequence of 
events. Both DOM and VTD maintain long-lived struc-
tural data for sophisticated operations in the access and 
modification stages, while SAX and StAX do not. DOM 
as well as SAX and StAX create objects for their data 
representations, while VTD eliminates the object-cre-
ation overhead via integer arrays.

DOM and VTD maintain different types of long-lived 
structural data. DOM produces many node objects to 
build the tree object. Each node object stores the element 
name, attributes, namespaces, and pointers to indicate 
the parent-child-sibling relationship. For example, in Fig-
ure 2 the node object stores the element name of Phone 
as well as the pointers to its parent (Home), child (1234), 
and next sibling (Address). In contrast, VTD creates no 
object but stores the original document and produces 
arrays of 64-bit integers called VTD records (VRs) and 
location caches (LCs). VRs store token positions in the 
original document, while LCs store the parent-child-sib-
ling relationship among tokens.

While DOM produces many node objects that include 
pointers to indicate the parent-child-sibling relationship, 
SAX and StAX associate different objects with differ-
ent events and do not maintain the structures among 
objects. For example, the start element event is associ-
ated with three String objects and an Attributes object 
for the namespace uniform resource identifier (URI), 
local name, qualified name, and attribute list. The end 
element event is similar to the start element event with-
out an attribute list. The character event is associated 
with an array of characters and two integers to denote 

•

•

Table 2. Regular expressions of XML tokens.

Token	 Regular	expression

Start element ‘<’ Name (S Attribute)* S? ‘<’
End element ‘</’ Name (S Attribute)* S? ‘<’
Attribute Name Eq AttValue
S (0×20 0×90×D 0×A)+ 
 Space-like characters
Eq S? ‘=’ S? 
 Equal-like characters
Name Some other regular expressions
AttValue Some other regular expressions

* = 0 or more; ? = 0 or 1; + = 1 or more.
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the start position and text length. In Figure 2, Phone’s 
start element has no attribute and namespace, so SAX 
and StAX associate it with two String objects to store its 
local and qualified names.

OPERATIONAL AND  
PERFORMANCE CHARACTERISTICS

Different data representations result in different opera-
tional and performance characteristics, as summarized 
in Tables 3 and 4, respectively. They also affect the choice 
of parsing models for various applications, as indicated in 
Table 5. We focus on how different data representations 
impact three XML processing capabilities: streaming, 
access and modification, and hardware acceleration.

Streaming capability
Streaming requires low latency and memory usage, 

and usually the parser only needs to extract a small 
portion of the document sequentially without knowing 
the entire document structure. To understand parsing 
models’ impact on streaming capability, it is important 
to understand how the parser and application interact 
during data access. 

DOM and VTD. As Figure 3a shows, DOM and VTD 
can access data only after parsing is complete—that 
is, when the loop inside the parser program can draw 
no more tokens from lexical analysis to construct the 
tree or VRs. A large document will significantly delay 
data access. Moreover, the two models’ long-lived data 
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l_name: Phone q_name: Phone

Original document VTD records Location caches

<?xml version = “1.0”?>
<Record>
  <Name>John</Name>
  <Home>
    <Phone>1234</Phone>
    <Address>11th St</Address>
  </Home>
  <Work>
    <Phone>5678</Phone>
    <Address>M Ave</Address>
  </Work>
</Record>

version
1.0
Record
Name
John
Name
Home
Phone
1234
Phone
…
Record

9
10
0
0
5
1
0
0
5
1
…
1

–1
–1
0
1
1
1
1
2
2
2
…
0

6:7
15:3
23:0:6
33:0:4
38:4
44:0:4
52:0:4
61:0:5
67:4
73:0:5
…
187:0:6

token name token type nested depth

offset:length/
offset:prefex

length:qname
length 33:0:4

53:0:4
121:0:4

token index
–1
61:0:5
130:0:5

1st child index

LC1 (depth = 1)

61:0:5
84:0:7
130:0:5
152:0:7

token index
–1
–1
–1
–1

1st child index
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Figure 2. Data representation example. The start element of Phone is represented by “0, 2, 61:0:5” in VTD records. This entry indicates 
that there is a token of type 0 (start element) at nested depth 2, and this token’s first character is located at the 61st position of the 
original document. This token has a prefix name of length 0, indicating that the token does not use a namespace, and a qualified 
name of length 5. The token indices (offset: prefix length: qname length) of all start elements are stored in location caches at certain 
nested depths. For example, LC level 2 (LC2) stores the token indices by its first 32-bit field for all start elements at nested depth 2. 
The second 32-bit field stores the index of its first child. A token with no child has “–1” in this field. For example, the start element of 
Phone is recorded in LC2 as “61:0:5, –1”.
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Table 3. XML processing operational characteristics. 

XML	processing		

stage	 DOM	 SAX	(push)	 StAX	(pull)	 VTD

Parsing 1. Extract token as objects. 1. Extract token as objects. 1. Extract token as objects. 1. Do not extract token as  
    objects (use integers instead).
 2. Build tree by objects  2. Create events by objects 2. Create events by objects 2. Build location cache and 
 (for example, Nodes). (for example, Strings). (for example, Strings). 64-bit VTD records.
 3. Not ready for access. 3. Ready for access—go to  3. Ready for access—go to 3. Not ready for access. 
  step 8 (application handles  step 8 (application handles 
  event). or skips event).
 4. Do not destroy any  4. Destroy objects after  4. Destroy objects after 4. Do not destroy any objects. 
 objects. handling the event. handling or skipping the  
   event.
 5. Repeat from step 1 until  5. Repeat from step 1 until 5. Repeat from step 1 until 5. Repeat from step 1 until 
 all tokens are processed. all tokens are processed. all tokens are processed. all tokens are processed.
 6. (Optional) Destroy the  6. (Optional) Destroy the 6. (Optional) Destroy the 6. Keep the original document 
 original document after  original document after original document after in memory. 
 building the entire tree. handling all events. handling or skipping all  
   events.
 7. Ready for access. 7. Access is complete—go  7. Access is complete—go 7. Ready for access. 
  to step 9. to step 9.
Access 8. Back-and-forth access:  8. Sequential access (no 8. Sequential access (skip 8. Back-and-forth access: 
 Parsing provides sufficient  skip): The application creates forward): The application Parsing provides sufficient data 
 data structures (tree). its own data structure if more  creates its own data structures (VTD records and 
  advanced access or  structure if more advanced location caches). 
  modification is required (go  access or modification is 
  to step 4). required (go to step 4).
Modification 9. Update the tree. 9. Update the data structure  9. Update the data structure 9. Update by making new copy 
  from step 8. from step 8. of the document.
 10. Write the tree in XML  10. Write the data structure 10. Write the data structure 10. The document is already in 
 format. from step 9 in XML format. from step 9 in XML format. XML format.
 11. Destroy the tree. 11. Destroy the data  11. Destroy the data 11. Destroy VTD records and 
  structure. structure. location cache.

Table 4. XML processing performance characteristics.  

Category	 DOM	 SAX	(push)	 StAX	(pull)	 VTD

Output Tree object Events (all tokens) Events (interested tokens) Integer array
Parsing (CPU) High Medium Medium Low
Parsing (memory)  Intensive Low Low Medium
Access (navigation)  Fast (back and forth) Slow (sequential: no skipping) Medium (sequential:  Fast (back and forth) 
     skip forward)
Modification (update) Medium (not incremental) Depends (template/forward) Depends (template/forward) Fast (incremental)
Estimated5 throughput, small  ~10 Mbytes per second ~20 Mbytes per second ~20 Mbytes per second ~50 Mbytes per second 
file (1 Kbyte-15 Kbytes)* 
Estimated5 throughput, large  ~5 Mbytes per second ~20 Mbytes per second ~20 Mbytes per second ~40 Mbytes per second 
file (1 Mbyte-15 Mbytes)* 
Estimated memory,* large ~7 Mbytes Does not depend on  Does not depend on ~1.5 Mbytes 
file (1 Mbyte-15 Mbytes)   document size document size

* The test platform is a Sony VAIO laptop with a Pentium M 1.7-GHz processor (2-Mbyte integrated L2 cache) and 512-Mbyte DDR2 RAM. The front bus is  
 clocked at 400 MHz. The OS is Windows XP Professional Edition with Service Pack 2, and the Java virtual machine is version 1.5.0_06.
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representations make memory usage grow 
with document size, which is undesirable 
for streaming. 

SAX and StAX. In contrast, SAX and 
StAX interlace parsing and access, so the 
application can access partial data before 
parsing is complete. Because the objects 
associated with events can be destroyed 
regularly, memory usage does not grow 
with document size. Therefore, although 
SAX and StAX are two times slower than 
VTD due to frequent object allocations,5 
they are still better candidates for stream-
ing applications.

SAX and StAX are both designed for 
streaming applications, but their parser-
application interactions are different. As 
Figure 3b shows, SAX adopts the push 
model, which uses callback functions to 
report events from the parser to the appli-
cation. The parser has a loop to continu-
ously check tokens produced from lexical 
analysis. When it finds a token, the parser 
invokes a callback function based on 
the token type such as startElement(…), 
endElement(…), characters(…). 

In contrast, StAX adopts the pull model, 
as shown in Figure 3c. An application in the 
pull model can skip uninterested events by 
calling nextEvent(), whereas an application 
in the push model must handle all events 
fed from the parser. The pull model does 
not need to maintain states between call-
back functions to decide correct actions, 
making the programming flow more natural and main-
tainable.

A common misconception is that pull parsers are always 
faster than push parsers because they save effort by skip-
ping uninteresting events. However, numerous studies 
reveal that this is not always true.5-8 Although the appli-
cation can skip events by calling nextEvent(), the parser 
still creates the events sequentially without skipping them. 
Performance therefore depends on the application needs. 
If the application has to navigate through the entire docu-

ment, the pull model has little advantage over the push 
model, but if it can stop parsing after accessing certain 
uninteresting data, the pull model is faster.

Access and modification capability
To compare the four parsing models’ ability to access 

and modify data back and forth, we considered two 
scenarios based on the input XML document shown 
in Figure 2, in which the root Record has a child Name 
with several siblings, each of which has multiple Phone 

Table 5. XML processing capability and applications. 

Capability	 DOM	 VTD	 SAX/StAX

Parsing output Tree object (long-lived) Integer arrays (long-lived) Events (frequently destroyed)
Streaming No No Yes
Access  Back and forth repeatedly Back and forth repeatedly One pass sequentially
Modification Directly modify the tree (frequent  Copy and paste to new array  Get and put into template 
  and complex is OK)  (only OK if simple and rare) (only OK if simple and rare)
Desirable application Database In between Networking

…
…

// Communicate with tokenizer
// Build the data structures

// Data structure completely built
// Ready for application to access

Parser Application (access)

Push parser (Interlaced) Application (access)
(a)

(b)

(c)

Pull parser (Interlaced) Application (access)

invoke callback

callback returns

invoke 
acc

ess

Loop

Loop

Loop

// Callback functions

// Navigate the data structures

invoke callback

callback returns

nextEvent returns

invoke nextEvent

nextEvent returns

invoke nextEvent

Event nextEvent( ) {
  // Communicate with tokenizer
  // Create event by grouping
  // appropriate tokens into objects
  // Return the event
}

// Invoke nextEvent( )
// Check event type
// Invoke callback function

Event nextEvent( ) {
  // Communicate with tokenizer
  // Create event by grouping
  // appropriate tokens into objects
  // Return the event
}

// Invoke nextEvent( )
// Check event type
// Handle the event

startElement(…) {
  // Handle the event
  return;
}
endElement(…) {
  //Handle the event
  return;
}
characters(…) {
  // Handle the event
  return;
)
…

Figure 3. Parser-application interactions. (a) DOM and VTD: Access after 
parsing completed; (b) SAX: Interlaced parsing and access (parser driven); (c) 
StAX: Interlaced parsing and access (application driven).
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children. The siblings can appear before Name (not 
shown in the figure). The access scenario calls for print-
ing the texts of all Phone elements if the text of Name is 
John, while the modification scenario calls for switch-
ing the first and last Phone elements in the document.

SAX and StAX. SAX and StAX do not maintain long-
lived structural data and are limited to sequential access. 
Thus, in the access scenario, the application must either 
buffer the texts of all Phone elements before the FSM 
matches John or parse the document again after the 
FSM matches John. Memory consumption depends on 
Name’s location in the document. In the modification 
scenario, the application must buffer the entire docu-
ment before it can switch the last Phone element with the 
first one. SAX and StAX thus do not have an advantage 
in terms of memory consumption as they do in stream-
ing applications. For this reason, SAX and StAX are 
typically used for forward-only applications or simple 
modifications via template such as Extensible Stylesheet 
Language Transformations (XSLT).

DOM and VTD. In contrast to SAX and StAX, DOM 
and VTD maintain parent-child-sibling information 
in their long-lived structural data. Preparing this data 
incurs more overhead, but the simple-to-navigate tree 
or LCs ease access. 

VTD consumes far less memory than DOM—1.3 
to 1.5 times the original document size, which is 3 to 
5 times smaller than the DOM tree—and it parses 5 
to 10 times faster than DOM.5 This performance dif-
ference is primarily attributable to DOM object cre-
ations. Many object-oriented programming languages 
incur small memory overhead per object allocation, 
and VTD is immune to this overhead because it uses 
integer arrays instead of objects. Moreover, VRs and 

LCs are constant in length and thus the VTD 
implementation can store them in large mem-
ory blocks. By allocating a large integer array 
for 4,096 VRs, VTD has a per-array alloca-
tion overhead of only 16 bytes, significantly 
reducing the per-record overhead.

Although VTD outperforms DOM in 
throughput and memory usage, it cannot replace 
DOM because of their different modification 
capabilities. DOM is more suitable for massive 
and frequent updates, much as a linked-list is 
more suitable than an array for update opera-
tions. It is possible to add or delete a node to or 
from the DOM tree by simply manipulating the 
pointers between tree nodes. The modified tree 
is then ready for further updates. 

On the other hand, when adding or deleting 
a record to or from the integer arrays in VRs, 
VTD might need to rebuild many VR and LC 
entries to process the next update operation. 
VTD is thus more suitable for incremental 
updating. As Figure 4 shows, it employs a “copy 

and paste” approach in the modification scenario that 
rearranges the original document into a new buffer. Such 
a modification requires three processing steps in DOM: 
building the in-memory tree, navigating and updating 
the tree, and translating the updated tree back into XML 
format. These steps involve many string concatenations, 
buffer allocations, and character conversions, making 
DOM less efficient for simple and rare modifications.

Hardware acceleration capability
Hardware acceleration can boost XML parsing per-

formance that general-purpose processors otherwise 
cannot achieve. As Table 4 shows, XML parsing soft-
ware throughput on a general-purpose processor ranges 
from 5 to 50 Mbytes per second, but enterprise software 
servers call for gigabit-per-second throughput rates.9,10 
To explore the different parsing models’ hardware accel-
eration capabilities, it is necessary to understand their 
data structures. 

VTD’s symmetric data structure makes it or other 
similar flat-array XML representations ideal candidates 
for hardware acceleration. The flat array allows efficient 
memory management before and after acceleration and 
eases the crossing between the hardware acceleration 
and the application logic spaces. 

In contrast, the parsing and application logic in SAX 
and StAX are interwoven via callbacks or events inten-
sively. The high frequency and associated overhead of 
entering and leaving the hardware acceleration space to 
and from the application logic space make these models 
unsuitable for hardware acceleration. 

DOM’s tree structure also poses serious challenges 
to hardware acceleration. Implementing circuitries to 
operate and manage dynamic tree representations is far 

<?xml version = “1.0”?>
<Record>
  <Name>John</Name>
  <Home>
    <Phone>5678</Phone>
    <Address11th St</Address>
  </Home>
  <Work>
    <Phone>1234</Phone>
    <Address>M Ave</Address>
  </Work>
</Record>

<?xml version = “1.0”?>
<Record>
  <Name>John</Name>
  <Home>

    <Address11th St</Address>
  </Home>
  <Work>

    <Phone>1234</Phone>

    <Phone>5678</Phone>

    <Address>M Ave</Address>
  </Work>
</Record>

Output stream
(file or network)

52:0:4

61:0:5
73:0:5

130:0:5
142:0:5

84:0:7

121:0:4

152:0:7

Original document
(in-memory)

Figure 4. VTD’s “copy and paste” approach. VTD rearranges the original 
document into a new buffer, a modification that requires three processing 
steps in DOM. The approach makes VTD more suitable than DOM for 
incremental updates.
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more complex than typical field-programmable gate 
array (FPGA) and application-specific integrated circuit 
(ASIC) designs, making DOM less favorable for hard-
ware acceleration.

No commercial VTD hardware is yet available on the 
market, so at this point it is impossible to evaluate the 
performance of hardware-accelerated VTD versus soft-
ware-based DOM on frequently updated operations.

O ur analysis of parsing models’ data represen-
tations and their impact on XML processing 
yielded the following conclusions. Both DOM 

and VTD are good for back-and-forth data access. 
VTD parses faster than DOM and consumes less 
memory. VTD is better for simple and rare modifica-
tions, while DOM is better for complex and frequent 
ones. SAX and StAX are appropriate for applications 
with extremely restrictive memory but not for back-
and-forth access or modification. 

In a nutshell, DOM is most suitable for database 
applications, while SAX and StAX are more appropri-
ate for streaming applications. VTD is a good candi-
date for hardware acceleration based on its symmet-
ric array structure, but its effectiveness in real-world 
applications using a commercial hardware accelerator 
remains an open question. ■
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