
Synthesis Paper - Efficient Filtering of XML Documents for Selective

Dissemination of Information
Eran Chinthaka (echintha@cs.indiana.edu)

Computer Science Department,

Indiana University,

Bloomington, IN 47405.

Abstract
With the rise of Internet and the wide adoption of distributed systems, the volume of

information available ranging across various fields exploded. This also affected and

increased the difficulty in surveying, querying and filtering information according to user

profiles. The goal of SDI (Selective Dissemination of Information) systems is to provide

information for the interested users via user profiles. Even though SDI systems existed in

distributed systems even before internet, most of the complications became visible due to

the adoption of Internet.

Lots of mechanisms were developed to implement these SDI systems and one widely used

option is to express user interests using queries stored in user profiles. These queries are

applied against all the incoming documents and the matched documents are delivered to

the interested users.

This synthesis paper looks at three different approaches in implementing SDI systems to

make this process efficient when the input documents are XML.

1 Introduction
The exploding amount of information available over the internet and increasing interest

of users for this information fueled the development of various types of content

dissemination systems. Some of the challenges of these systems included timely delivery

of information, robustness, personalization, filtering against user profiles, etc., Initial SDI

systems concentrated on the IR techniques from database technologies to match user

profiles against new information. But database approaches and content dissemination

approaches differ in a significant way. In a database system large numbers of data itesma

re indexed and stored, and queries are applied individually. On the other hand, in SDU

systems, large numbers of queries are stored and documents are individually matched

against those queries. And also since the above mentioned approaches had less flexibility

to express user interest, XPath and XQuery based systems began to gain acceptance

across these systems.

The key challenge is to efficiently and quickly search the potentially huge set of user

profiles to find those which the document is relevant. Initial systems developed using

XPath have tried to apply each and every XPath to each and every document. But when

the amount of information to be handled becomes large, these algorithms simply didn’t

scale. Researchers in SDI started searching for various ways to optimize the matching of

these queries against a given document. This synthesis paper concentrates on three such

prominent efforts.

Mehmet Altinel and Michael Franklin proposed one of the best XML filtering techniques,

XFilter, in "Efficient Filtering of XML Documents for Selective Dissemination of

Information" [1]. Chee-Yong Chan et al [2] came up with an improved version of

XFilter, named XTrie, which outperformed XFilter both in terms of memory and speed.

mailto:echintha@cs.indiana.edu

A year later Michael Franklin and Yanlei Diao published a paper [3] which capitalized on

the above efforts to provide more flexibility to the user using XQuery and shared path

processing.

2 Overview on Papers
The SDI engine, XFilter, proposed by Altinel and Franklin provided one of the first

implementations of content dissemination systems based on XML document and XPaths.

They have concentrated on using XPaths over other querying techniques, because

1. They didn't require the full functionality provided by the other contemporary

approaches, especially because SDI systems always tries to filter only one

document at a given moment

2. XPath already had a specification from W3C, compared to other query languages.

XFilter first processes all the existing queries, which are found in user profiles, and

decompose those queries into a set of nodes. These nodes represent the element nodes in

the query and are considered as the states of a Finite State Machine (FSM). FSM

approach is very important in an XPath based query processor especially because the

order of the elements within user profiles should also be preserved.

Then it employs a query index on all the FSMs to process all queries simultaneously. The

basic way to build this query index is to come up with a hash table which has the current

element name as the key and next possible events as the value. When an XML document

comes, it gets events from that document and those events drive the FSM to find the

matches.

XFilter system had used two sophisticated methods, beyond the basic algorithm

explained above to improve the efficiency of query indexing. Then the basic system was

compared against these two improvements varying workload parameters like number of

profiles, depth of elements of XML, level of element nodes in the XPath queries, etc.,

The XTrie paper is built on top of the XFilter approach and claimed 2-4 times

improvement in speed over the XFilter system. XFilter relies on indexes created using the

names of the XPath elements. But XTrie indexes on substrings, sequences of element

names, and claim to provide much effective mechanism to index than XFilter.

The three key prominent features of XTrie can be summarized as follows.

1. XTrie can filter based on complex and multiple path XPath expressions

2. XTrie support both ordered and un-ordered matching of XML documents

3. Since XTrie uses substrings, instead of elements names to index, the authors

claim that XTrie can reduce both the number of unnecessary index probes and

avoid redundant matching.

Authors of this paper had also used an almost similar experimental setup to the one

mentioned in XFilter. Chan et al had compared the approach proposed in this paper

against two possible cases defined in XFilter paper, varying the same workload

parameters mentioned in XFilter paper. The two approaches mentioned in XTrie paper,

lazy XTrie and eager XTrie both out performs XFilter in every aspect of the observed

parameters. Even though there are no empirical evidence given in the paper, authors

claim that XTrie is roughly about 33% memory efficient than XFilter. Since memory

efficiency is a required property in a system which subjects to heavy concurrent loads and

also, since XTrie is faster than XFilter, XTrie can be regarded as a more appropriate

solution than XFilter for a SDI system.

The two systems discussed above send out the whole document to the user after a match

of a profile against a given XML document. The third paper from Yanlei Diao and

Michael Franklin talks about one more stage of a SDI system, in addition to the query

processing system. The system proposed in that paper also concentrates on efficiently

customizing the output message that will be sending to the users after successful matches.

This can be challenging than any of the above systems as this system should perform

more tasks at least equal to the performance numbers of the above systems. The approach

proposed in the paper is to allow the user not only to express their queries to select

documents but also to customize the output using XQuery [6]. Since one XQuery might

contain multiple queries and there can be several hundreds or thousands of such

XQueries, the first two mentioned approaches might not perform well in this situation. So

the authors have used YFilter [7], which is a high-performance shared path engine.

YFilter uses Non-Deterministic Finite Automation to represent full set of navigation

paths, and supports shared processing of the path expressions.

This paper builds on YFilter and has tried to exploit on shared processing of path

expressions and to find an efficient way to perform post-processing of the results. Since

the above two aspects are two competing points as aggressive path sharing requires more

sophisticated post-processing, the authors have proposed a compromised solution, with

the experimental results presented in the paper.

3 Taxonomy
The three papers mentioned in Section 2 are evaluated against following criteria to come

up with taxonomy.

1. Scalability and robustness

2. Performance evaluation

3. Experimental setup

4. Assumptions

5. Organization and readability

6. Applications and future work

SDI systems, when integrated in to a distributed system, have to be robust and scalable

with the increase of work load. Since these two aspects can be regarded as the key factors

of a distributed SDI system, section 3.1 concentrates on evaluating the robustness and the

scalability of the three systems proposed in these papers.

Section 3.2 looks at the experimental setup of these systems which are used to evaluate

the performance. Since all three papers claim that the system proposed are performing

well, it is worth to look at the base of experimental setups that are being used.

Section 3.3 discusses the results of the performance evaluations. These results are

interpreted in different perspective and this section tries to rationalize the claims that they

have made by trying to interpret their conclusion on results.

Section 3.4 will focus on various assumption made in these systems. It will also discuss

about the usability of the proposed system, in various SDI environments.

Section 3.5 talks about the overall organization of these papers and my views on

readability of those, as a novel reader. Finally section 3.6 will look at the application and

future works of the proposed system in a real world system.

 3.1 Scalability
The authors of XFilter paper had tested their system with considerable amount of XML

documents. But the paper had failed by not talking about the scalability and robustness of

the system. Even though the number and variations of the input XML documents are

large, there were no experiments done on the ability of this system to be used in a real

time system. A usual SDI system will get hundreds or thousands of XML documents per

second and it is very important to check the robustness of the system in such an

environment. At the same time users might change their preferences, new users will

come in and new components and modules will start sending events to the system. So the

systems should be able to handle increased loads up to an acceptable level. It could have

been better if the system was tested under multiple concurrent loads and this seems to be

a problem with the XTrie paper as well. XTrie paper also used an extensive amount of

XML documents, but the authors were not able to test the system under concurrent loads.

The authors of XML message brokering paper had done very good amount of work to

test the scalability of the system. The researchers had setup a separate experiment to

measure the effect of MQPT (Multi-Query Processing Time) on the variation of number

of queries from 5000 to 40000. All the techniques that the paper discusses were tested

with these settings.

The scalability results provided in the XML message brokering paper seems to be

showing a clue about a problem in the scalability of the system. According to the figure

11, MQPT increases linearly with the number of queries, but this increase has a very high

slope compared to the other tests given in this paper. This sharper increase can be due to

the additional impact of recursive data on post-processing costs, as given in the paper.

But this might be an alarming signal about the proposed system when it is to be used in a

real system, where any kind of XML document can occur. So I think it is worthwhile to

test this system against more complex and concurrent loads before really putting in to

production.

None of the papers have estimated an upper bound of the loads that these systems can

handle. Since the decision to employ a system in a production system also depends on

their threshold values, it could have been better if the threshold values also were

published.

3.2 Experimental Setup
Both XFilter and XTrie papers have used a standard set of DTDs from NITF (News

Industry Text Format). The NITF DTD is mean to be used for press releases, wire

services, broadcasters, newspapers and even for Web-based news organizations. This

format is supported by various organizations as well. Since these systems are about

dissemination of information, I think the test document is a good format to be used. In

addition to that both the systems have used same tools and methods to generate sample

queries and XML documents. Even the parameters that are varied during the evaluations

are the same for both experiments. So the comparisons found in XTrie paper can be

regarded as a very good setup.

The XML broker paper also has used standard DTDs from the XQuery specification. But

I think these two DTDs may not be a best test data for a content dissemination system. If

the author had used more relevant DTDs for SDI system, the results of this experiment

could have easily been mapped to a real time system.

3.3 Performance Evaluation
The authors of XFilter paper have tested their system for various workloads and

optimization techniques. And the best technique, the list balance and pre-filtering

technique, out of all they have tested, is also proven using empirical evidences and

claimed in the conclusion.

But they haven't tested or done any performance evaluation with other systems to

compare their systems against existing systems. They have claimed throughout the paper

that the system is efficient, but not comparing it to an existing systems puts up a question

about the amount of efficiency the system provides over the existing systems. Before this

experiment, Tak W. Yan and Hector Garcia-Molina have proposed a similar content

dissemination system [4], SIFT, which the authors of this paper could have used for

performance comparisons. In addition to that, Marcos and Roberto et al [5], have also

proposed a basic content dissemination system for publish/subscribe systems.

The XTrie paper, in contrast to the above paper had done a very good amount of work, by

at least comparing their system against XFilter system. They have used the same

experimental setup as in XFilter and have compared their results against it. According to

the results given in the XTrie paper, on average, XTrie is 2-4 times faster than XFilter

and about 33% efficient, in terms of memory.

But even though XTrie paper compares with the XFilter system, they haven't used the

best case of XFilter for comparisons. As mentioned above also, the best case of the

XFilter is when they use both list balance and pre-filtering. But XTrie authors haven't

used it to compare their results which I think is a questionable.

The XML message broker paper, from the same second author of the XFilter paper, was

unable to compare with an existing system. The performance numbers they have

provided based on the shared path matching technique that they have proposed is

promising. But the lack of data to compare it with existing systems might not give full

credit to the efforts of this paper.

3.4 Assumptions
The three papers discussed so far have used various assumptions in the papers. This

section will look at the viability of some of those assumptions.

All three papers are relying on pre-processed XPath and path expressions. This is

important in a high work load environment as indexed queries will perform better and

will not be a burden on the processing power of the system. Especially XFilter and XTrie

systems compile the user queries and try to optimize the application of those queries to

source data in run time.

But this assumption might not hold in a highly dynamic environment. For example, if

these systems are used within a peer-to-peer system to filter out messages, there can be

problems updating the compiled queries as and when peers go down or new peers join.

One of the advantages of the proposed systems is that the approaches described do not

require re-compiling existing set of queries when a new query or a profile comes in. But

there can be a processing overhead on the system when the system is updated to a new

query. At the same time if a user changes his preferences or removed itself from the

system, then system must look at in every index and remove/update relevant entries. This

can definitely be a performance problem, as the pre-compiled structure can no longer be

used to apply against the incoming documents until it is updated to suit new conditions.

None of the papers have looked at this aspect of a SDI system. Even though this is highly

probable in a peer-to-peer system, this situation can also happen, with a less probability

in other systems as well. So evaluation of these systems under these conditions might

give a more accurate picture of these systems.

Performance evaluation of the third paper clearly shows that all the best possible

optimizations are not available and the whole system can be much slower when there is

no DTD found for the exchanged messages. This can be a problem when proposed

system is used in a Web services environment, which is the case when it comes to an

event based publish/subscribe system used in LEAD (Linked Environment for

Atmospheric Discovery) project. Even though there is a defined schema for SOAP

messages, there is no single schema for the content of the body of the SOAP messages

that are being exchanged through the SDI system. Even if the schema is defined in

WSDL files of the operations that are invoked in this setting, there are large number static

as well as dynamic WSDLs that can appear in this system. So some of the optimizations

proposed in this system might not work in such an environment.

All these system are based on SAX to generate events for the source XML documents.

The problem with SAX is that when it starts sending events for a given document, it

cannot be stopped until the whole document is done with parsing. Even the above

systems are done with processing all the indexed queries, those systems have to parse the

whole document. There are few disadvantages of using SAX alone in a high-performance

system like this.

First, if most of the queries can be evaluated by looking at the initial parts of the XML,

then passing the whole document might be in-efficient. Again this can be a problem in a

Web services environment. Most of the queries that user write will be applied on the

“Header” element of the SOAP message. For example, a user might want to filter out

messages that are destined to a particular endpoint. In that case employing some sort of

“lazy” parsing might improve the efficiency of the system.

Second, if the XML that are exchanged are couple of MB or GB each, then consuming

one XML file might take some time. If the user’s query only checks the properties that

are found in the initial parts of the XML, as discussed above, then parsing this big XML

file using SAX will be a disaster for the system.

3.5 Organization and Readability
All three papers have started with a very good introduction of the background knowledge

required to understand the concepts and have proceeded explaining the respective

systems. XTrie paper seems to be bit complicated when it starts to explain on the

underlying theory and optimizations behind the proposed system. But the authors of

XFilter paper had explained all most the same theory in a more concise and easier way to

understand to the reader. On the other hand XML message broker paper had done very

good job on explaining the key concepts underneath the proposed system.

Every paper had related their work to the relevant works that were done on or before

respective paper’s efforts. But the XFilter seems to have not looked at the systems that

are directly related to the problem that they are solving. As mentioned earlier also, there

were some efforts [4] [5] on content dissemination by application of XPath expression,

even though they are not as optimized as XFilter.

3.6 Applications and Future Work
This section will briefly look at how XFilter, XTrie and the XML message broker can

perform in some of the practical content dissemination environment and possible

improvements these systems might require to perform even more in the present

environments.

Web services event brokers normally work on top of standard WS-Eventing protocol [8].

In a large scale system a SDI system is subscribed to all the event generators and Web

services client are subscribed to this SDI system.

As described in the Assumption section also, none of these systems will be able to

achieve the highest performance with the assumptions given in the respective papers.

This is especially because user requirements can be highly dynamic and they might add,

edit, and delete the queries more often. It is better if there was a study on these systems

which measures the performance with the different kinds of changes in user queries.

At the same time, again as mentioned in the assumptions section, usage of SAX can be a

problem to parse XML documents. The existing content dissemination implementation

from Apache, the Apache Synapse project [9], has a simple implementation to apply

XPath compared to the complex systems proposed in these papers. But when Web

services environment becomes dynamic and overloaded it can be interesting to apply

XFilter and XTrie to such an environment and how those systems can perform. One of

the options that can be used to overcome this problem is to find the possibilities of

plugging in StAX [10], Streaming API for XML as the XML parser to these systems.

This might overcome the parsing of un-necessary parts of the XML improving the

memory and performance of the system.

These concepts can also be used in an XML data base backed event triggering scheme as

well. Especially the XML message broker proposed by Yanlei and Franklin will be useful

as

1. It allows the customization of the output

2. The format of the XQueries are just like typical SQL queries

3. The indexing mechanism used in the system can be tightly integrated to the

indexing scheme of the database.

It will be an interesting work to try XML message broker with such an XML database

and come up with a performance evaluation.

Conclusion

XFilter paper and XTrie paper are two approaches for XPath processing of an SDI

events. And the XML message brokering paper explains one of the pioneering efforts to

have both filtering and output document customizations in a one single SDI system. All

the systems are fast performing and have tried to exploit various aspects of XPaths,

XQuery and XML documents. Had the papers explained deeper in to the respective areas

through the aspects discussed in this paper, these experiments could have been more

useful to be used in a real time system.

References
[1] M. Altinel, M. Franklin. Efficient filtering of XML documents for selective

dissemination of information. In VLDB, Sep. 2000

[2] Chan, C.-Y., et al., Efficient Filtering of XML Documents with XPath Expressions.

Proc. of 18th International Conference on Data Engineering (ICDE'02), 2002.

[3] Yanlei Diao, and Michael J. Franklin. Query Processing for High-Volume XML

Message Brokering. In Proceedings of VLDB 2003, September 2003.

[4] Tak W. Yan and Hector Garcia-Molina The SIFT information dissemination system

ACM Transactions on Database Systems (TODS) Volume 24 , Issue 4 Pages: 529 -

565 (December 1999)

[5] Marcos Aguilera, Robert E Storm, Daniel C Sturman, Mark Astley and Tushar D.

Chandra Matching events in a content-based subscription system. Proceedings of the

eighteenth annual ACM symposium on Principles of distributed computing – 1999.

[6] S. Boag, D. Chamberlin, et al. XQuery 1.0: An XML query language. W3C

Recommendation. http://www.w3.org/ TR/xquery, 2007

[7] Y. Diao, P. Fischer, et al. YFilter: Efficient and scalable filtering of XML documents.

In ICDE, Feb. 2002.

[8] Don Box, Luis Felipe et al. Web Services Eventing 2006

http://www.w3.org/Submission/WS-Eventing

[9] Apache Synapse Project - A robust, lightweight implementation of a highly scalable

and distributed service mediation framework based on Web services and XML

specifications. http://ws.apache.org/synapse/

[10] Larry Cable, Thorick Chow et al. Java Specification Requests 173: Streaming API

for XML http://jcp.org/en/jsr/detail?id=173

http://www.vldb.informatik.hu-berlin.de/
http://www.w3.org/Submission/WS-Eventing
http://ws.apache.org/synapse/

	2 Overview on Papers
	3 Taxonomy
	3.1 Scalability
	3.2 Experimental Setup
	3.3 Performance Evaluation
	3.4 Assumptions
	3.5 Organization and Readability
	3.6 Applications and Future Work

